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Abstract—OFDM and OTFS modulations have demonstrated
their efficacy in mitigating interference in time and frequency
domains respectively, caused by path delays and Doppler shift.
However, no modulation technique exists to address Inter-
Doppler Interference (IDI) resulting from time-varying Doppler.
Additionally, both OFDM and OTFS require supplementary
precoding to mitigate Inter-User Interference (IUI) in MU-
MIMO channels. To address these limitations, we present a
general modulation for any multi-dimensional channel, based
on Higher Order Mercer’s Theorem (HOGMT) [1], which
has been shown to decompose multi-dimensional channels into
independent subchannels. The proposed method, called Multi-
dimensional Eigenwave Multiplexing (MEM) modulation, employs
jointly orthogonal Eigenwaves, decomposed from the multi-
dimensional channel as subcarriers, thereby simultaneously can-
celing interference from all the Degrees of Freedom (DoF). We
show that MEM modulation achieves diversity gain in the eigen
domain, which in turn achieves total diversity across each DoF
e.g., space (users/antennas), time-frequency and Doppler-delay.
The accuracy and generality of MEM modulation are validated
through simulation in three types of channels, achieving up to
two orders of magnitude improvement in BER over OTFS.

Keywords—Eigen decomposition, multi-dimensional channel,
Interference cancellation, Multiplexing, OTFS.

I. INTRODUCTION

Inter-Symbol Interference (ISI) due to multipath delays is
mitigated in OFDM by transmitting symbols in frequency
domain [2]. On the other hand, Doppler effect causes Inter-
Carrier Interference (ICI), which is addressed by transmitting
symbols in the Doppler-delay domain, as in OTFS modula-
tion [3]. However, in rapidly time-varying channels, both the
multipath delays and the Doppler vary over time and fre-
quency, leading to interference in the Doppler-delay domain,
which is commonly referred to as IDI [4]. Receivers have
been investigated to mitigate IDI for OTFS symbols [4], [5].
However, these additional steps cannot ensure interference-free
communication in the Doppler-delay domain, especially for
rapidly time-varying channels. Figure 1 shows the progression
of various modulation schemes to mitigate ISI, ICI and IDI
due to path difference (∆x), velocity difference (∆x′) and
acceleration difference (∆x′′). Each method is designed to
achieve orthogonal subcarriers in the time, time-frequency
and Doppler-delay domains respectively. However, these can-
not provide subcarriers in other dimensions (∆y(m)) that
do not have simple Fourier bases such as space domain in
MU-MIMO, requiring additional precoding to cancel spatial
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Figure 1: OFDM and OTFS cancel ISI and ICI respectively
but cannot remove interference due to higher order physics,
which results in IDI. These are also incapable of canceling
interference in the spatial dimension. MEM is a general mod-
ulation technique to cancel inference across all the DoF by
defining subcarriers in eigen domain, called Eigenwaves.

interference [6]. Therefore, we postulate designing jointly
orthogonal subcarriers in the domains represented by high
order physics and/or dimensions is desirable, as it is relatively
less variant and cause minimum interference across DoF.

Recently, HOGMT has been proposed as a mathematical
tool to decompose multi-dimensional channels, as represented
by its kernel, which yields independent subchannels along each
DoF [1], [7]. We leverage this to develop Multi-dimensional
Eigenwave Multiplexing (MEM) modulation which employ the
jointly orthogonal Eigenwaves decomposed from the high-
dimensional channel as subcarriers. Symbols on these subcar-
riers achieve orthogonality across each DoF, thereby simul-
taneously cancel interference from all dimensions. It is also
important that the optimal subcarriers are strictly Eigenwaves
in order to remain orthogonal during transmission over the
channel. It is well known that complex exponentials, used
as OFDM subcarriers are common eigenfunctions for Linear
Time-Invariant (LTI) channels. However, there are no such pre-
defined eigenfunctions for general Linear Time-Varying (LTV)
channel. We provide a refresher on channel kernel decom-
position using HOGMT in Section III-C to contextualize the
contributions of this work and clarity.

OTFS uses subcarriers obtained by Symplectic Fourier
Transform (SFT), while MEM obtains its subcarriers by
HOGMT. These subcarriers are orthogonal in the Doppler-
delay domain, while that of MEM are orthogonal in the eigen
domain. Further, OTFS requires CSI at the receiver side
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Figure 2: Paper outline: contributions and novelty

only, while MEM requires CSI at both the transmitter and
receiver side. Although this can be viewed as a potential
cost to implement MEM, it is quite common to require CSI
at the transmitter in modern wireless systems [8]. Also, OTFS
cannot directly generalize to higher dimensional channels. For
instance, it requires additional precoding for MIMO channels
as it cannot achieve spatial orthogonality in the Doppler-delay
domain. In theory, OTFS is a special case of MEM as it achieves
orthogonal Eigenwaves for rapidly time-varying channels as
well as in higher dimensions, eliminating the need for ad-
ditional processing and precoding to simultaneously cancel
IDI and IUI. Figure 2, shows the connection between the
preliminary concepts required for MEM and the contributions
of this work, which are summarized as follows1:

• We formulate the asymmetric channel kernel for time-
varying MIMO, MIMO-OFDM and MIMO-OTFS chan-
nels and generalize it for any multi-dimensional channel.

• We prove that approximation by finite eigenfunctions
obtained by HOGMT for multi-dimensional asymmetric
kernel is optimal in MMSE sense.

• We define Eigenwave Transform, which transfers all the
DoF to a unified eigen domain. This is applied to design
the Multi-dimensional Eigenwave Multiplexing (MEM)
modulation and show that the Eigenwaves are optimal
subcarriers for joint orthogonality across all the DoF.

• We formulate an error metric, Soft Orthogonality to
evaluate the robustness of MEM and show its generality for
varying channels. Then we provide a trade-off between
the BER and throughput.

• We evaluate MEM under three different channels. Two
of these are rapidly time-varying channels with different
time-evolution intervals and the third is a MU-MIMO
channel to show that MEM does not require any additional
precoding. Finally, we present the PAPR and show the
BER and throughput under imperfect CSI.

II. RELATED WORK

Rapidly Time-Varying Wireless Channels: There are many
instances in modern wireless networks where the receivers
may move at very high speeds, causing the geometry of
the physical channel to change rapidly, causing rapidly time-
varying channels [10], [11]. In this case, the time-frequency
and Doppler-delay domains are correlated and hence induce

1This manuscript is a extension of the prior work [9].

Table I: Performance gap in rapidly time-varying channels

Applications Sources of variation Performance Gap
V2X, HST, UAV Time-varying scatterers, UAV atti-

tude, high Doppler
BER at 20 dB:
≈10−2 [12], [13]

Target Metrics:
10−6<BER<10−4

MIMO, XL/MU-
MIMO

Time-varying multipath, spatial
visibility regions

mmWave, RIS,
VLC, THz

Time-varying blockage and reflec-
tion angles, air absorption

a time-varying Doppler causing interference in the Doppler-
delay domain. Table I highlights the challenges of commu-
nicating in rapidly time-varying channels, which can stem
from various features of the channel, such as time-varying
Doppler in Vehicle-to-Everything (V2X), High-Speed Train
(HST) and Unmanned Aerial Vehicle (UAV) channels; time-
varying multipath in MU-MIMO channels; and time-varying
blockage and reflection angles in Reconfigurable Intelligent
Surfaces (RIS), Terahertz (THz) links, and Visible Light
Communications (VLC). Unfortunately, the State-of-The-Art
(SoTA) methods only achieve modest error rates that require
2-4 orders of magnitude improvement.
Communications in Multi-dimensional Channels: The
input-output relations and analysis of MIMO-OTFS systems
can be found in [14], [15]. Channel estimation for MIMO-
OTFS is investigated in [16], [17], [18], [19], which provide
the CSI for equalization and precoding [20], [6], [21].
However, these techniques treat the interference in the space
domain and Doppler-delay domain independently, failing to
achieve joint orthogonality. A jointly spatio-temporal precod-
ing for multi-dimensional channels is presented in [1]. How-
ever, it utilizes eigenfunctions to construct the whole signal
instead of transmitting symbols over independent subchannels,
making it energy inefficient and sensitive to CSI errors.
Eigen Approximation Problem: Karhunen–Loève Theorem
(KLT) approximation is proven to be optimal for the random
process approximation by finite eigenfunctions in [22] and
Eckart–Young–Mirsky Theorem shows that SVD is optimal
for low-rank matrix approximation [23]. Nyström approxi-
mation [24] shows rank-k approximation using SVD is op-
timal for Symmetric Positive Semi-Definite (SPSD) matrix.
However, there is no optimality analysis for eigenfunction
approximation for asymmetric multi-dimensional kernels. For
the implementing eigen approximation, [25] presents a black-
box approach for SVD decomposition, which is applicable for
matrices. [26] proposed a method for extracting eigenfunctions
based on Mercer’s Theorem. However, it does not show the
optimality of the approximation and is only applicable for
symmetric kernels.

III. CHANNEL KERNEL AND DECOMPOSITION

In order to design a general modulation, a unified expression
for LTV channels is necessary. Therefore, we begin by deduc-
ing the kernels for three known multi-dimensional channels
from elementary principles [27], followed by a general for-
mulation for multi-dimensional channel kernel. The kernels
are summarized in Table II for comparative understanding.
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A. Kernels of (Common) Multi-dimensional Channels

1) Case 1: Time-varying MIMO (4-D) Channel

In LTV channels, the transmitted signal s(t) is impacted by
the underlying physics of the channel, described by path delays
and Doppler shift to produce the received signal r(t) [11] as,

r(t) =
∑P

p=1
hps(t− τp)e

j2πνpt (1)

where hp, τp and νp are the path attenuation factor, time delay
and Doppler shift for path p, respectively. We omit the noise
term for simplicity. Then (1) is expressed in terms of the
overall delay τ and Doppler shift ν as

r(t) =

∫∫
SH(ν, τ)s(t−τ)ej2πνt dτ dν (2)

=

∫
h(t, τ)s(t−τ) dτ (3)

where SH(ν, τ) is the (Doppler-delay) spreading function,
which describes the combined attenuation factor for all paths
in the Doppler-delay domain. The time-varying impulse re-
sponse h(t, τ) is related to SH(ν, τ) as,

h(t, τ)=

∫
SH(ν, τ)ej2πtν dν (4)

Extending h(t, τ) to MIMO case, Hu,u′(t, τ) denotes the time-
varying impulse response between the u′-th transmit antenna
and the u-th received antenna. Therefore, the multi-user (or
multi-antenna) version of h(t, τ) [28] is a tensor,

H(t, τ) =

H1,1(t, τ) · · · H1,u′(t, τ)
...

. . .
...

Hu,1(t, τ) · · · Hu,u′(t, τ)

 (5)

and the received signal in (3) is extended as,

ru(t) =

∫ ∑
u′
Hu,u′(t, τ)su′(t− τ)dτ

=

∫ ∑
u′
Ku,u′(t, t′)su′(t′)dt′ (6)

where Ku,u′(t, t′)=Hu,u′(t, t−t′) is the 4-D MIMO channel
kernel following the definition of kernel in [29], [11]. Then,
(6) can be rewritten using the kernel as2,

r(u, t) =

∫∫
KH(u, t;u′, t′)s(u′, t′) du′ dt′ (7)

In general, the channel tensor, H(t, τ) is asymmetric, i.e., ∃i, j
pair, such that Hi,j(t, τ )̸=Hj,i(t, τ). Therefore, by definition,
channel kernel, KH(u, t;u′, t′) is also asymmetric.

2) Case 2: MIMO-OFDM (4-D) Channel

Proposition 1. The continuous form of OFDM input-output
relation for LTV, in the frequency domain is given by,

r(f) =

∫
b(f, ν)s(f − ν)dν (8)

2Note that (7) represents the 2-D convolution integral over space and time
DoF at the Tx and Rx, where t′=t−τ and u′ are the variables at the Tx.

Time-Frequency DomainDoppler-Delay Domain

Time-Delay domain

Doppler-Frequency Domain

Fourier Transform

Symplectic Fourier Transform

Figure 3: Representation domains of LTV channel: OTFS de-
sign 2-D orthogonal subcarriers in the Doppler-delay domain
and transfer SH(ν, τ) to LH(t, f) by SFT and combine the fre-
quency dimension by IFFT to form the time domain symbols.
While for LTI channels, h(t, τ) and SH(ν, τ) collapse to h(τ);
b(f, ν) and LH(t, f) collapses to H(f). OFDM combines
carriers in the frequency domain to time symbols by IFFT.

where b(f, ν)3 is the (frequency domain) transfer func-
tion [29]. Further, the continuous form of the input-output
relation using the MIMO-OFDM kernel, KB(u, f ;u

′, f ′) is
given by,

r(u, f) =

∫∫
KB(u, f ;u

′, f ′)s(u′, f ′) du′ df ′ (9)

Proof. For notational compactness, rewrite (3) in matrix form,
r = hs, where h is the time-domain channel matrix. Then the
frequency domain input-output relation is given by multiplying
both sides by the M-point DFT matrix, FM on both sides.

FMr︸ ︷︷ ︸
ř

= FMhš = FMhFHM︸ ︷︷ ︸
b

FMs︸︷︷︸
š

=⇒ ř = bš (10)

Note that FMhFHM is the SFT of h as shown in Figure 3 and
in [30]. Then the continuous form of b is given by,

b(f, ν) =

∫∫
h(t, τ)ej2π(tν−fτ) dt dτ (11)

Meanwhile, both ř and š represent the signals in the frequency
domain. Therefore, using (11) we can derive the OFDM input-
output relation for LTV channels as,

r(f) =

∫
b(f, ν)s(f − ν)dν (12)

Furthermore, extending b(f, ν) to the MIMO case as B(f, ν),

ru(f) =

∫ ∑
u′

Bu,u′(f, ν)su′(f − ν)dν (13)

Similarly, the kernel input-output relation is given as

r(u, f) =

∫∫
KB(u, f ;u

′, f ′)s(u′, f ′) du′ df ′ (14)

This follows in the same spirit as defining (7) using (6).
3(8) is an archaic form of frequency domain input-output relation for LTV

channels in [29], which defines b(f, ν) as ”Input Spectrum Output Spectrum
relation”. Since this formulation predates OFDM, we believe that it is
necessary to prove (8) for MIMO-OFDM in LTV channels using contemporary
formulations for OFDM in the literature based on DFT/IDFT.

3
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Table II: Multi-dimensional asymmetric channel kernels in wireless communication

Channel type Signal domain Interference type Input-output relation of channel kernel
Time-varying MIMO [1], [28] Space-time domain IAI-ISI r(u, t) =

∫∫
KH(u, t;u′, t′)s(u′, t′)du′dt′

MIMO-OFDM [31], [32] Space-frequency domain IAI-ICI r(u, t) =
∫∫
KB(u, f ;u′, f ′)s(u′, f ′)du′df ′

MIMO-OTFS [30], [33] Space-Doppler-delay domain IAI-IDI r(u, τ, ν) =
∫∫
KDD(u, τ, ν;u′, τ ′, ν′)s(u′, τ ′, ν′)du′dτ ′dν′

General multi-dimensional channel All the DoF All the DoF r(Z) =
∫
K(Z;Z′)s(Z′) dZ′

3) Case 3: MIMO-OTFS (6-D) Channel

In the literature, OTFS is often written using the Zak
representation [30], [33] of (1) as,

Zr(τ, ν) =
∑P

p=1
hpe

j2πvp(τ−τp)Zs(τ − τp, ν − νp) (15)

where Zr(τ, ν) is the Zak transform of r(t) given by,

Zr(τ, ν) ≜
√
T
∑
k

r(τ + kT )e−j2πkνT (16)

where T is the symbol duration. Denote r(τ, ν) = Zr(τ, ν)
and s(τ, ν) = Zs(τ, ν) and rewrite (15) as,

r(τ, ν) =

∫∫
hdd(τ, ν; τ

′, ν′)s(τ − τ ′, ν − ν′) dτ ′ dν′ (17)

where hdd(τ, ν; τ
′, ν′)dτ ′dν′ describes the combined path

gains for all paths in the delay and Doppler-shift range
(τ ′, τ ′ + dτ ′) and (ν′, ν′ + dν′) respectively.

Following similar extensions for MIMO as in previous cases
and defining the kernel, (17) is written using the MIMO-OTFS
kernel in the space-Doppler-delay domain as,

r(u, τ, ν)=

∫∫
KDD(u, τ, ν;u

′, τ ′, ν′)s(u′, τ ′, ν′)du′dτ ′dν′

(18)

Remark 1. The received OTFS symbol at an antenna (u) is
the integral of the channel kernel, KDD multiplying all the
OTFS symbols over the space-Doppler-delay domain that is
responsible for IAI and IDI. Ideally, if the Doppler shift and
delay are integer multiples of the time and frequency grids,
then the kernel is 0 at other symbols, meaning there is no
IDI [33]. However, this ideal OTFS waveform is difficult to
achieve in practice because: (a) The perfect division of time-
frequency grids may not be practical in channels with high
order physics; 2) For multi-path Doppler-delay channels, as
the delay and Doppler shifts are different on each path, there is
no common factor satisfying the integer multiple requirements.
Therefore, in general, OTFS waveform is unable to avoid
IDI [30]. Hence we formulate this kernel for further analysis.

B. Generalized Kernel of Multi-dimensional Channels

Based on the kernel formulations above, the input-output
relation of any wireless channel (without considering noise)
can be modeled as a mapping of the signal at the transmitter
to the signal at the receiver by a channel kernel, K as,

r(z1,. . .,zk) =∫
. . .

∫
K(z1,. . .,zk;z

′
1,. . .,z

′
k)s(z

′
1,. . .,z

′
k)dz

′
1. . .dz

′
k (19)

where (z1,. . .,zk) and (z′1,. . .,z
′
k) are the degrees of free-

dom (e.g., space, time, frequency, delay, Doppler, etc.) at
the receiver and the transmitter, respectively. In general, for
communication systems P=Q. For brevity, henceforth we
denote Z=(z1,. . .,zk) and Z ′=(z′1,. . .,z

′
k), rewriting (19) as,

r(Z) =

∫
K(Z;Z ′)s(Z ′) dZ ′ (20)

In general, (20) is applicable to any higher-dimensional kernel
that may incorporate joint interference between any number of
DoFs that are unique to a particular communication paradigm
such as scattering angle, polarization, etc. [34], [35].

Remark 2. At the transmitter, the signal, s(Z) is transmitted
in Z domain (also the transmitter DoF), which is converted
to the signal in Z ′ domain, s(Z ′) during convolution. The
convolution (during propagation over LTV), projects s(Z ′)
onto the channel kernel K, which transfers the signal to the
Z domain (DoF at the receiver) as r(Z) with the interference
across Z ′ domain (DoF). Common multi-dimensional channel
kernels are special cases of this, given by (7), (14) and (18).

C. Kernel Decomposition

A generalized version of Mercer’s Theorem, called High
Order Generalized Mercer’s Theorem (HOGMT) has been
recently proposed in [1]. This presents a mathematically
principled approach to decompose multi-dimensional asym-
metric channel kernels like in (20), into low-dimension, jointly
orthogonal eigenfunctions, which is expressed as,

K(Z;Z ′) =

∞∑
n=1

σnψn(Z)ϕn(Z
′) (21)

where E{σnσ′
n}=λnδnn′ . λn is the n-th eigenvalue and

ψn(Z) and ϕn(Z ′) are orthonormal eigenfunctions, i,e.,∫
ϕn(Z

′)ϕ∗n′(Z ′)dZ ′=δnn′ and
∫
ψn(Z)ψ

∗
n′(Z)dZ=δnn′

(22)
These eigenfunctions are referred as dual eigenfunctions that
exhibit the important duality property,∫

K(Z;Z ′)ϕ∗n(Z
′) dZ ′ = σnψn(Z) (23)

IV. CHANNEL KERNEL APPROXIMATION

Duality property is critical for using the eigenfunctions
as independent subchannels in practice. (23) suggests that
when one of the eigenfunctions is transmitted through a
multi-dimensional channel kernel, it is transferred to its dual
eigenfunction, scaled only to the corresponding eigenvalue (or
subchannel gain). Therefore, the orthonormality and duality

4
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of the eigenfunction, unambiguously allow us to transmit
symbols over independent subchannels in the eigen domain
by employing dual eigenfunctions as subcarriers. Note that
in this context, each subchannel/subcarrier is a pair of dual
eigenfunctions, ϕn(Z ′) and ψn(Z).

HOGMT provides us a mathematical tool to decompose any
kernel into an infinite number of eigenfunctions. However,
in reality, we can only utilize a finite number of eigen-
functions to approximate the kernel. To achieve maximum
energy efficiency, it is desirable to use the least number of
eigen components to approximate (most part of) the kernel.
Therefore, the general approximation problem is formulated
as minimizing the number of eigenfunctions, N that limits
the kernel approximation error below some threshold,

argmin
K̂

N s.t ∥K(Z;Z ′)− K̂(Z;Z ′)∥2 < ϵ (24)

where, K̂(Z;Z ′)=
∑N
n=1 knfn(Z)gn(Z

′) is the approximate
kernel, {fn} and {gn} are two sets of arbitrary orthonormal
bases and kn is the projection of the kernel onto the bases.

However, in practice the number of eigenfunctions is fixed.
Then (24) is equivalent to the MMSE problem for a fixed N ,

argmin
K̂

E
{
∥K(Z;Z ′)− K̂(Z;Z ′)∥2

}
(25)

We solve this problem by proving that the approximate
kernel, K̂ reconstructed from the eigenfunctions obtained
using HOGMT is optimal in MMSE sense, which is given
in Theorem 1. The choice and trade-offs regarding N are
discussed in Section V and evaluated in Section VII.

Theorem 1. (Eigenfunction approximation for asymmetric
kernel) If K(Z;Z ′) is an asymmetric kernel, approximating
it using eigenfunctions decomposed by HOGMT solves (25).

Proof. Denote ϵN = E
{
∥K(Z;Z ′)− K̂(Z;Z ′)∥2

}
. Then the

total ϵN across all DoF is given by,∫∫
ϵN dZ dZ ′

=

∫∫
E
{[
K(Z;Z ′)−

N∑
n=1

knfn(Z)gn(Z
′)
]2}

dZ dZ ′

=

∫∫
E
{[
K(Z;Z ′)

]2}
dZ dZ ′ −

N∑
n=1

E
{
k2n

}
(26)

As the first term is unrelated to the choice of {fn} and {gn},
the problem in (25) is equivalent to maximizing the second
term in (26) with the following constraints,

argmax
{fn},{gn}

N∑
n=1

E
{
k2n

}
s.t. ⟨fn, fn′⟩=δnn′ , ⟨gn, gn′⟩=δnn′

(27)

Now, since by definition, kn is the projection of the kernel
onto the bases, we rewrite the objective function in (27) as,

N∑
n=1

E
{[∫∫

K(Z;Z ′)f∗n(Z)g
∗
n(Z

′) dZ dZ ′
]2}

(28)

Spatio-temporal eigenfunctions

Spatio-temporal channel

Time domain                               Space domain Space-time domain

Figure 4: A spatio-temporal 4-D channel is decomposed into
two 2-D eigenfunction pairs for Tx and Rx respectively.

Since maximizing a squared term is equivalent to maximizing
its absolute value, we introduce a Lagrangian multiplier 1

2βn
associated with the constraint for fn and maximize E as,

E =

N∑
n=1

E
{∣∣∣∣ ∫∫ K(Z;Z ′)f∗n(Z)g

∗
n(Z

′) dZ dZ ′

− 1

2
βn

(∫
fn(Z)f

∗
n(Z) dZ − 1

)∣∣∣∣} (29)

Differentiating with respect to each f∗n and setting the deriva-
tive to 0 yields,

∂E

∂f∗n(Z)
=

E
{∣∣∣∣∫ (∫

K(Z;Z ′)g∗n(Z
′) dZ ′−βnfn(Z)

)
dZ

∣∣∣∣} = 0

(30)

which is satisfied when∫
K(Z;Z ′)g∗n(Z

′) dZ ′=βnfn(Z) (31)

(31) proves that the dual eigenfunctions obtained from
HOGMT with the property in (23) is indeed a solution to
the problem posed in (25) 4.

Figure 4 shows an example of HOGMT approximation
for the time-varying MIMO channel, where the time do-
main shows the time-delay profile, the space domain shows
the channel gain between MIMO antennas and the space-
time domain shows the delay profile across antennas. Unlike
1-dimensional eigenvectors in the MIMO (spatial) channel
matrix, the spatio-temporal Eigenwaves are 2-dimensional,
achieving joint orthogonality in space-time domain.

Since the symmetric channel kernel is a special case of the
asymmetric channel kernel, Theorem 1 can also approximate
symmetric kernels using Mercer’s theorem [36].

Corollary 1. (Special case: symmetric kernel) Specifically,
if the kernel K(Z;Z ′) is symmetric, then decomposing by
Mercer’s theorem minimizes the kernel approximation error.

4Note that introducing Lagrangian multiplier for gn and deriving with
respect to each g∗n results in the dual form of (31) which reinforces the
duality property of fn and gn, leading to the same proof of optimality.

5
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: A 6-D Channel Kernel 
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Figure 5: Two views of eigenwave multiplexing: a) Transmission and eigen domain view of a 6-D MIMO-OTFS channel kernel
with u=u′=3, τ=τ ′=3, ν=ν′=3; b) System view for practical implementation with HOGMT

Proof. For a symmetric kernel, we have the decomposition,

K̂(Z;Z ′)=
N∑
n=1

knfn(Z)fn(Z
′) (32)

Following the steps in proof of Theorem 1, we have∫
K(Z;Z ′)f∗n(Z

′) dZ ′=βnfn(Z) (33)

which is the very definition of the eigenfunction fn, hence
suggesting (32) approximated by Mercer’s theorem resulting
in MMSE of the approximate kernel K̂.

Since, Theorem 1 is applicable to all kernels, we always
consider asymmetric kernels in our analyses.

V. EIGENWAVE TRANSFORM AND MULTIPLEXING

HOGMT in Section III-C and the subsequent discussions
provide a principled approach to combine all the DoF of the
channel embodied in its kernel, into one eigen domain. The
eigen domain is then divided into independent subchannels,
called Eigenwaves. Figure 5a shows signal transmission over
a 6-D channel kernel. The transmission domain may involve
physical processing blocks where signals are convolved over
the multi-dimensional channel. Since the DoF at the Tx and Rx
are the same, the transmitted symbols, x(u′, τ ′, ν′) (different
from baseband modulated symbols) are arranged in a 3-D
grid. This 3-D grid integrates over the 3-D kernel block (blue)
across its DoF (u′, τ ′, ν′) during convolution and produces
a (blue) cube in the received 3-D symbol grid. To obtain
each cube across the DoF (u, τ, ν) at the receiver, the 3-D
block kernel with DoF (u′, τ ′, ν′) should be arranged across
DoF (u, τ, ν) leading to a 6-D kernel tensor. Therefore, the
kernel is decomposed into parallel Eigenwaves by HOGMT
and data-symbols, {sn} are multiplexed over these in the
eigen domain. Figure 5b shows an implementation view using
HOGMT for decomposing the kernel, obtained from the
Channel State Information at the Transmitter (CSIT). This
process of multiplexing and demultiplexing and converting the

data symbols between the transmission and the eigen domain
is detailed in Section V-B.

From Theorem 1, we learned that HOGMT can also approx-
imate a kernel by a finite number of Eigenwaves (N ) ordered
by descending eigenvalues. Therefore, transmitting signals
over Eigenwaves with N eigenvalues achieve the highest
subchannel gains (σn). A large value of N will increase the
complexity of HOGMT and increase the BER. In contrast,
a small N will reduce the throughput. There are multiple
strategies for choosing N with respect to different priorities
such as memory, complexity, BER or throughput. This trade-
off is discussed and evaluated in Section VI-C and Section VII.

A. Eigenwave Transform

OFDM and OTFS utilize FT and SFT to transform the
subcarrier domain and the transmission domain, respectively.
However, these can not be applied to the eigen domain due
to the non-equivalence of Eigenwaves and Fourier bases for
LTV channels (this is detailed in Remark 3 in Section V-B).
Therefore, to employ Eigenwave as subcarriers, it is necessary
to introduce a transform, called Eigenwave Transform to
transfer baseband symbols from eigen to transmission domain.

Theorem 2. Given a continuous signal x(Z ′) and a discrete
eigen space HΦ spanned by Eigenwaves ϕn(Z ′), Eigenwave
Transform (ET) is defined as the transformation of the trans-
mission domain (Z ′) to the eigen domain (n) as

xn=ET
[
x(Z ′)

]
=

∫
x(Z ′)ϕn(Z

′) dZ ′ (34)

where xn is the Eigen form of x(Z ′) in the eigen space HΦ.
Then the Inverse Eigenwave Transform (IET) is given by

x(Z ′)=IET
[
xn

]
=

∞∑
n=1

xnϕ
∗
n(Z

′) (35)

where ET[·], IET[·] are the ET, IET operators, respectively5.
5The formal expression of ET of x(Z′) onto ϕn(Z′) is ETΦ[x(Z

′)]; ET
of r(Z) onto ψn(Z) is ETΨ[r(Z)]. To simplify, we omit the subscript Φ
and Ψ, as in this paper, ϕn and ψn is tied with (Z′) and (Z), respectively.
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Proof. For ET and IET to be an invertible transform pair,
xn=ET

[
IET

[
xn

]]
and x(Z ′)=IET

[
ET

[
x(Z ′)

]]
must hold

true. This is detailed in the Appendix A.

ET is a formal way to derive MEM. As a new proposed
operation, its properties are still under investigation. Here,
we provide two properties in Corollary 2 and Corollary 3 as
complementary support to the multiplexing technique.

Corollary 2. (Linearity of Eigenwave Transform) ET is a
linear operation that satisfies,

ET
[
ax(Z ′) + by(Z ′)

]
=aET

[
x(Z ′)] + bET

[
y(Z ′)

]
(36)

which also holds for IET as well.

Proof. The proof is provided in the Appendix B.

Corollary 3. (Parseval’s Theorem in Eigenwave Transform)
The integral of the product of two functions (one is the
conjugate form) is equal to the sum of its ET transform as∫

x(Z ′)y∗(Z ′) dZ ′=

∞∑
n=1

xny
∗
n (37)

Specifically, let x(Z ′)=y(Z ′), we have∫
|x(Z ′)|2 dZ ′=

∞∑
n=1

|xn|2 (38)

Proof. The proof is provided in the Appendix C.

Corollary 2 allows for multiplexing parallel Eigenwaves for
modulation purposes. Corollary 3 suggests that the energy of
signals in the multi-dimensional domain (Z ′) is equal to the
energy of signals in the eigen domain (n).

B. Multi-dimensional Eigenwave Multiplexing

So far, Theorem 1 provides the theoretical support for
decomposing finite Eigenwaves and Theorem 2 transfers eigen
domain to transmission domain, we formally introduce MEM.

Theorem 3. (Multi-dimensional Eigenwave Multiplexing)
Given a multi-dimensional channel kernel K(Z;Z ′) with
input-output relation as in (20), is decomposed into finite
multi-dimensional Eigenwaves in MMSE sense as,

K(Z;Z ′)=

N∑
n=1

σnψn(Z)ϕn(Z
′) (39)

then, a given symbol set, {sn} is modulated using Eigenwaves
{ϕ∗n} as subcarriers given by its IET,

s(Z ′) = IET
[
sn

]
=

N∑
n

snϕ
∗
n(Z

′) (40)

The received signal r(Z) is demodulated by employing the
Eigenwave Matched Filter using {ψ∗

n} and ET,

rn = ET
[
r(Z)

]
= σnsn + vn (41)

where, vn is the AWGN noise.

Proof. At the transmitter, the generic symbols x(Z) is ob-
tained by multiplexing the data symbols {sn} and Eigenwaves
{ϕ∗n(Z)} corresponding to the Z DoF as,

x(Z)=IET
[
sn

]
=

N∑
n=1

snϕ
∗
n(Z) (42)

The orthogonality and duality of the eigenfunctions, ensure
that the data symbols remain orthogonal from each other after
transmission over the multi-dimensional channel, while the
corresponding Eigenwaves are transferred to its dual Eigen-
waves by the kernel. Considering infinite eigenfunctions for
the kernel (ideal case) but a finite number for the transmitted
signal (practical case) and no noise (for brevity), the signal at
the receiver with Z ′ DoF is given by the convolution integral
(see the Remark 2 in Section III-B),

r(Z) =

∫
K(Z;Z ′)x(Z ′) dZ ′

=

∫ { ∞∑
n=1

σnψn(Z)ϕn(Z
′)︸ ︷︷ ︸

decomposed kernel

N∑
n′=1

sn′ϕ∗n′(Z ′)︸ ︷︷ ︸
transmitted symbols

}
dZ ′

=

∫ { N∑
n=1

σnsnψn(Z) |ϕn(Z ′)|2︸ ︷︷ ︸
=1

+

∞∑
n=1

N∑
n′ ̸=n

σnsn′ψn(Z)ϕn(Z
′)ϕ∗n′(Z ′)︸ ︷︷ ︸
=0

}
dZ ′

=

N∑
n=1

σnsnψn(Z) (43)

Therefore, (43) shows that the received signal is essentially a
projection of the baseband symbols on the eigenspace spanned
by the eigenfunctions {ϕn} and the channel transfers it to its
dual eigenfunction {ψn}, scaled by gain of parallel subchannel
{σn}. In this process the data-symbols {sn} are still kept
independent in the eigen domain and can be recovered by
demultiplexing as shown in Figure 5a.

At the receiver, the received signal r(Z) is projected back
to the baseband signal space by multiplying with the conjugate
of the dual eigenwave,

rn=ET
[
r(Z)

]
=

∫
r(Z)ψ∗

n(Z) dZ

=

∫ N∑
n′=1

σn′sn′ψn′(Z)ψ∗
n(Z) dZ=

∫
σnsn|ψn(Z)|2 dZ

=σnsn (44)

The symbol rn is an estimate of the original transmitted data
symbol, scaled by the channel gain without any interference
from other symbols along all the DoF. This is precisely the
property of a matched filter but using Eigenwaves of the CSIR
decomposed by HOGMT, which is highlighted in Figure 5b
as Eigenwave Matched Filter.
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Transmitting the modulated symbol {sn} over the multi-

dimensional channel with kernel K(Z;Z ′), the received signal
is obtained by (43). Demodulating r(Z) with ψ∗

n(Z), the
estimated data rn is given by (44), which suggests that the
demodulated symbol rn is the data symbol sn multiplied a
scaling factor (channel gain) σn along with AWGN, meaning
there is no interference from other symbols.

Although, we assume perfect channel estimation and
CSIT=CSIR, it is not the focus of this work. Also, the CSIT
and CSIR errors are equivalent to the approximation error of
{ϕ̂n} and {ψ̂n} obtained from HOGMT, which is discussed
in Sections VI-A and VII.

Corollary 4. (Special case: MEM in LTI) In Linear Time-
Invariant (LTI) channels, OFDM is a specific case of MEM,
where the Eigenwaves do not depend on the specific channel.

Proof. From the equation (10), we have

FMhFHM = b =⇒ hFHM=FHMb (45)

In the LTI channels, the delay taps do not change, meaning
h is a circulant matrix (by adding cycle prefix). Therefore,
b=FMhFHM is a diagonal matrix. Then each column of FHM
in (45) is written as

hfm=bmfm (46)

where bm is the m-th diagonal element of b. (46) is the
definition of eigenvector fm. Then the IFFT step in OFDM
is equivalent to the IET step (40) in MEM. Furthermore, the
only requirement to satisfy (46) is that h is LTI, suggesting
that fm is the eigenwave for all LTI channels.

Remark 3. From a theoretical stand-point there can be
other forms of MEM in LTI channels as the channel can be
decomposed into different sets of Eigenwaves. However, the
DFT operator (F), employed in OFDM contains the common
Eigenwaves of all LTI channels, thus avoiding the need for
eigen decomposition. However, for LTV channels, b in (45) is
not diagonal and (46) does not hold. This implies that the com-
plex exponentials are no longer Eigenwaves and the OFDM
subcarriers are not orthogonal and hence suffer from ICI.
In contrast to OFDM subcarriers being Eigenwaves of LTI
channels, OTFS subcarriers are not the common Eigenwaves
for the general LTV channels, resulting in IDI.

Conventional methods define orthogonal subcarriers in a
specific domain, which does not ensure interference-free per-
formance unless they satisfy the definition of Eigenwaves of
the channel kernel. Therefore, MEM reveals the inner properties
of optimal subcarriers for all multi-dimensional channels to
achieve orthogonality in the eigen domain and by extension
across all DoF. To the best of our knowledge, there is no
evidence in the literature showing the existence of common
Eigenwaves for LTV channels. Therefore, for general LTV
channels, MEM based on HOGMT decomposition is the only
way to obtain and employ Eigenwaves as optimal subcarriers.

VI. PERFORMANCE ANALYSIS

A. Symbol Error Analysis

The symbol error in MEM is not straight-forward to formulate
as it may result from multiple aspects such as CSIT error,
CSIR error and approximation error, which motivates us to
find a unified metric to characterize all these errors. As
the CSI error can also be decomposed into Eigenwaves, it
is straightforward that all these errors can be equivalent to
the error in the Eigenwaves. Notice that all decomposed
Eigenwaves are normalized and thus the error of Eigenwaves
is represented by the dependence among Eigenwaves. So, we
define the Soft Orthogonality (SO) metric as the measure of
the Eigenwave error.

Definition 1. Soft orthogonality of the normalized basis func-
tion Φ = {ϕn}Nn=1 is defined as

O(Φ) =
1

N(N − 1)

N∑
n=1

N∑
n′ ̸=n

|⟨ϕn, ϕn′⟩| (47)

where the best case is O(Φ)=0, meaning the bases are strictly
orthogonal and the worst case is O(Φ)=1, indicating all the
bases are the same.

Ideally, all the Eigenwaves are strictly orthogonal and joint
interference is fully canceled as in (44). However, once there
exist CSI errors discussed above, decomposed Eigenwaves
would also have errors, denoted as {ϕ̂n} and {ψ̂n} so that
O(Φ̂) ̸= 0 and O(Ψ̂) ̸= 0. Consequently, using the correlated
Eigenwaves for demultiplexing is not perfectly matched with
the dual used for multiplexing, leading to symbol error in the
transmission domain. So, (44) is rewritten as,

ŝn = σnsn +

N∑
n′ ̸=n

σn′sn′Rψ̂n′ ψ̂∗
n

(48)

where Rψ̂n′ ψ̂∗
n
=
∫
ψ̂n′(Z)ψ̂∗

n(Z)dZ is the correlation of ψ̂n
and ψ̂n′ . The summation term in (48) serves as a measure
of interference from other symbols. Although it may appear
that the interference is only expressed by the orthogonality of
{ψ̂n}, it is also related to that of {ϕ̂n}. Since the approximate
Eigenwaves at the output of HOGMT also possess the duality
property according to Theorem 1, it is impossible to obtain
orthogonal {ψ̂n} from non-orthogonal {ϕ̂n} and vice-versa.
Therefore, like dual-orthogonality, dual non-orthogonality also
impacts multiplexing and demultiplexing in a similar manner.

B. Generality of MEM

Stationary channels: Assuming the channel is ergodic, as it
is divided into N independent subchannels (for non-singular
channel matrix/tensor, N is the product of the length of each
dimension), the capacity of MEM is the sum capacity of N
subchannels. Then the average capacity is given by,

C̄ = max
{Pn}

1

T

N∑
n=1

log2
(
1 +

Pnλn
N0

)
(49)

8



Prep
rin

t
where, λn is n-th eigenvalue and E{σnσn′}=λnδnn′ . T is
the time length. Pn and N0 is the power of sn and vn,
respectively. (49) shows that, with water-filling algorithm, MEM
achieves the capacity for stationary channels.

Remark 4. MEM modulation achieves the sum rate in
eigenspace, where Eigenwaves are independent subchannels.
It also implies achieving the diversity gain in eigenspace.

Non-stationary channels: The capacity for non-stationary
channels is not well defined as the ergodic assumption does
not hold. In this case, we give a qualitative analysis of the
optimality by using the concept of “diversity achieving” for
the non-stationary wireless channels. From [7], we know that
the total channel gain for the channel kernel K(Z;Z ′) is,∫∫

|K(Z;Z ′)|2 dZ dZ ′ =

N∑
n=1

λn + ϵMMSE (50)

where, ϵMMSE=
∑∞
n=N+1 λn is the residual channel gain in

MMSE sense. The deduction of (50) is given in Appendix D.
The power over all demodulated symbol rn in (43) is,

E


∣∣∣∣∣
N∑
n=1

rn

∣∣∣∣∣
2
 =

N∑
n=1

λnPn +N0 (51)

From (50) and (51) we find that the data symbol {sn} has
leveraged the maximum diversity gain in MMSE.
Higher dimensional channels: The diversity of the multi-
dimensional channel at each DoF (space, time-frequency,
Doppler-delay, etc.) are merged (integral along each DoF as
in (50)) and then divided in the eigenspace into independent
Eigenwaves as shown in the dashed block in Figure 5b. There-
fore, Eigenwaves achieve diversity in eigenspace, implying
that “diversity achieving” for the total channel as well.

C. BER and Throughput Trade-off

It is well known that transmitting symbols over subchannels
with small subchannel gains results in noise enhancement
at the receiver, which is synonymous to Eigenwaves and
eigenvalues in MEM. Therefore, choosing proper Eigenwaves
as data carriers is desirable to minimize noise enhancement
and the BER. We propose a strategy called Zero-padded
MEM (ZP-MEM), which assigns zeros on Eigenwaves with the
smaller eigenvalues, thereby discarding the bad subchannels.

Proposition 2. (ZP-MEM) Given N Eigenwaves ranked in
descending order of eigenvalues, ZP-MEM transmits symbols
in N̂<N Eigenwaves. The error rate for M-QAM modulated
symbol transmitted over the Eigenwave with gain σN̂ is6,

Pr(M,Z ′, σN̂ ) ≈ 4Q
(
σN̂

√
3Z ′/M − 1

)
(52)

where Z ′ is the SNR. Given the desired error probability bound
β, then N̂ is chosen as the largest integer satisfy the constraint

6The standard approximate error rate for M-QAM modulated symbol is
given by [37] as 4Q(

√
3Z′/M − 1). It is straightforward to derive it for

symbols with the subchannel gain σN̂ as in (52)

Table III: Parameters of Channel-A and Channel-B

Parameter Value
Channel model EVA model

Bandwidth Bw = 960 KHz
Center frequency fc = 5 GHz

Speed range v ∈ [100, 150] km/h
MEM/OTFS symbol size Doppler-delay bin: Nν ×Nτ=10× 64

Symbols per frame Ls = 100

Time-evolution interval Ch-A: NνNτ/Bw ; Ch-B: Nτ/Bw

Pr(M,Z ′, σN̂ ) < β, i.e.,

σN̂ > Q−1(β/4)/
√

3Z ′/(M−1) (53)

which means the error probability of the symbol that is
transmitted over the N̂ -th eigenwave should be less than β.

ZP-MEM is able to improve the BER by reducing the
noise enhancement. However, since it does not utilize all
the subchannels, it would reduce the throughput. Therefore,
there is a trade-off between the throughput and BER for MEM
and ZP-MEM. There may exist other strategies for choosing
Eigenwaves, which is not the focus of this paper.

VII. EVALUATION AND RESULTS

A. BER and Throughput

We analyze the accuracy of MEM modulations without
supplemental detectors and present comparisons to OTFS with
SoTA detectors for two rapidly time-varying channels exhibit-
ing varying degrees of time-evolution interval. We demonstrate
the generality of our approach for higher-dimensional channels
by directly applying MEM modulation to MU-MIMO channels
without any additional precoding. In all the simulations, we
assume perfect CSI at the transmitter and receiver.
Rapidly time-varying channels: We simulate the channels
in Matlab using the Extended Vehicular A (EVA) model
with parameters provided in Table III. We compared MEM
with OTFS for two channels: 1) Channel-A, where the time-
evolution period is NνNτ/Bw, which is the duration time
of one MEM/OTFS symbol, and 2) Channel-B with time-
evolution of Nτ/Bw (equals to the duration time of one
OFDM symbol with 64 subcarriers). In both cases, we generate
the Doppler-delay response per time-evolution interval. For a
fair comparison, OTFS is equipped with the Time-Frequency
Single Tap (TFST) [30] detector and Zero-Padded Maximal
Ratio Combining (ZP-MRC) [38] detector, respectively, which
also leverage the perfect CSI at the receiver. Additionally, we
also implement a ZP-MEM as in Proposition 2, with 1/8 and
1/4 symbol ZP length for both the waveforms.

Figure 6a-6d compare the BER of MEM, ZP-MEM, OTFS
with TFST and OTFS with ZP-MRC. In channel A with 1/8
symbol ZP, MEM has similar BER as OTFS with TFST, but a
higher BER than both ZP-MEM and OTFS with ZP-MRC. This
is because demodulating data symbols on Eigenwaves with
least σn enhances the noise as well. On the other hand, the ZP-
MRC detector can cancel interference among OTFS symbols

9
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(a) Channel A - 1/8 symbol ZP (b) Channel A - 1/4 symbol ZP (c) Channel B - 1/8 symbol ZP

2 orders
lower
BER

(d) Channel B - 1/4 symbol ZP

Figure 6: BER comparison between MEM and OTFS for Channel-A and Channel-B with QPSK modulation

(a) Channel A - 1/8 symbol ZP (b) Channel A - 1/4 symbol ZP (c) Channel B - 1/8 symbol ZP (d) Channel B - 1/4 symbol ZP

Figure 7: Throughput comparison between MEM and OTFS for Channel-A and Channel-B with QPSK modulation

Table IV: Parameters of Channel-C

Parameter Value
Channel model 3GPP 38.901 UMa NLOS [39]

Array type BS: 3GPP 3-D [40]; UE: Vehicular [41]
BS antenna Height hb = 10 m; Number NT = 4

UE antenna Height hu = 1.5 m; Number M = 2

UE number K = 2

UE speed v ∈ [100, 150] km/h
Bandwidth Bw = 20 Mhz

Center frequency fc = 5 Ghz

and thus has a similar BER to ZP-MEM. However, as shown in
figure 6b, with 1/4 symbol ZP, ZP-MEM has lower BER due
to utilizing better Eigenwaves, minimizing noise enhancement.
Figure 6c and 6d show that in the channel B, the TFST detector
does not work at all and ZP-MRC detector performs similar to
MEM due to more interference in Doppler-delay domain. Both
ZP-MEM and MEM are not affected much because interference
in the Doppler-delay domain does not affect the orthogonality
of Eigenwaves. In this case, ZP-MEM achieves 2 orders of
magnitude improvement in BER over OTFS with ZP-MRC at
15dB SNR, which meets the requirement stated in Table I.

Figure 7a-7d show ZP-MEM achieves lower throughput
than MEM, since it does not fully utilize all the Eigenwaves.
Specifically, with larger ZP, ZP-MEM has a lower throughput,
which shows an opposite trend as BER. It provides a trade-off
between BER and throughput for MEM and ZP-MEM.
Rapidly time-varying MU-MIMO channel with 6-D kernel
(space-Doppler-delay domain): In general, MEM is applicable
to any higher-dimensional kernel that may incorporate scatter-
ing angles, polarization or any other DoF unique to a particular
communication paradigm [34], [35]. The goal of this part is
to show its generality without other complementary processing
such as precoding. In Channel-C, we choose the space domain

(a) BER (b) Throughput

Figure 8: Comparing MEM and ZP-MEM in Channel-C

as an additional dimension. As OTFS require precoding to
cancel spatial interference, it fails to generalize to higher
dimensional channels. Therefore, we do not compare with
OTFS in this case. Further, any precoding applied to OTFS can
also be applied to MEM, which leads to the same comparison
in SISO case in Channel-A and Channel-B. Therefore, we
evaluate MEM and ZP-MEM using the 3GPP 38.901 UMa
NLOS scenario built on QuaDriga in Matlab. The parameters
and the layout of the BE and UE are shown in Table IV.

Figures 8a and 8b show the BER and throughput of MEM
and ZP-MEM with QPSK, 16-QAM and 64-QAM modula-
tions. The BER of MEM with QPSK, 16-QAM and 64-QAM
are limited to around 10−2 as there exist Eigenwaves with
significantly low eigenvalues. Note that the power attenuation
due to such low subchannel gain cannot be compensated by
10dB increase in SNR resulting in the flat line for MEM with
QPSK from 10dB to 20dB SNR. ZP-MEM has lower BER as
it does not use those Eigenwaves. However, it achieves lower
throughput than MEM. Overall, the performance of MEM and
ZP-MEM for Channel-C shows that unlike OTFS, these are
applicable to time-varying MU-MIMO channels.

10
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(a) Eigenwaves and One MEM symbol in Doppler-delay domain (b) One OTFS & MEM symbol

95% Percent

(c) CCDF of PAPR

Figure 9: Practicality of MEM: (a) Each MEM symbol is composed of N=64×10 unique Eigenwaves, each multiplied by unique
QAM symbols; (b) Time domain OTFS and MEM symbols. In both cases the bandwidth is 20MHz and the Doppler-delay bin
size is 10×64, yielding a symbol time of 32µs; (c) PAPR of MEM symbols is statistically similar to OTFS.

B. MEM Symbols in Time Domain

Figure 9a shows an example of MEM Eigenwaves and
MEM symbol in the Doppler-delay Domain with a grid size
is 10×64. Unlike OFDM and OTFS, the eigenwave is an
orthonormal surface across its DoF instead of a unit division
in the time-frequency or the Doppler-delay domain. However,
from another perspective, consider a Hilbert space, HΦ with
basis {ϕn}, then each eigenwave can be seen as a unit division
in HΦ. It means that MEM analyzes the channel as one unified
space (eigenspace) instead of multiple subspaces of its DoF.
For transmission purposes, the eigenwaves are transferred to
the time domain by IFT in the final step. An example time
series of one MEM and OTFS symbol are shown in Figure 9b.
Both symbols have a bandwidth of 20MHz and a duration of
64/20MHz×10=32µs but use very different subcarriers.

C. Peak to Average Power Ratio (PAPR) of MEM

PAPR is a critical aspect for practical implementation,
which is well-investigated in [42]. Figure 9c compares the
Complementary Cumulative Distribution Function (CCDF), a
metric commonly used to measure PAPR, for both waveforms,
any PAPR reduction techniques. The bandwidth is 20MHz
and the Doppler-delay bin size is 10×64. It can be seen that
both waveforms have very similar PAPR distribution, which
is desirable. The dashed line shows the the 95th percentile
indicating that the PAPR of MEM is approximately 5 dB.

D. Performance of MEM under Imperfect CSI

We also evaluate the error performance of MEM using a gen-
eral 4-D channel kernel K(Z; Γ)∈C4×5×4×5 with respect to
three parameters: Soft Orthogonality, O(Ψ̂), SNR and number
of Eigenwaves (N ). Figures 10a-10e show the change in BER
over N . With larger N , the brighter region increases because
utilizing more Eigenwaves results in higher BER. This is con-
sistent with the observations made in Section VII-A. For each
N , the BER increases with O(Ψ̂) but decreases with SNR,
as Eigenwaves error, measured using the Soft Orthogonality
metric, introduces interference from other symbols according
to (48). Figures 11a-11e compare the throughput over N . The
throughput increases with N , which has an inverse trend of

Table V: Computational Complexity for modulations

Strategies Operations Computational Complexity

OFDM FFT O(NT (NF log(NF )))

OTFS SFT O((NTNF ) log(NTNF ))

MEM ET+HOGMT O(N + min(NTN
2
F , N

2
TNF ))

the BER. The reason is that by using more Eigenwaves, more
baseband symbols are multiplexed and transmitted in the same
time interval. So, there is a clear trade-off between the BER
and the throughput with respect to N . With this flexibility,
given a fixed soft orthogonality, we can modify N or improve
the SNR to achieve the target performance.

Table V compares the complexity of OFDM, OTFS and MEM
in the 2-D case, where NT and NF are the number of time
and frequency slots, respectively. The number of Eigenwaves
N ≤ min(NT , NF ). The primary computational complexity
of MEM arises from the implementation of HOGMT, which is
realized by SVD for 2-D channel matrices and by unfolding
SVD for 4-D channel tensors.

VIII. CONCLUSION

In this paper, we show the evolution and limitations of
current modulation techniques (OFDM, OTFS) for the general
LTV channels and propose a novel MEM modulation based
on HOGMT decomposition and Eigenwave Transform. This
approach employs multi-dimensional Eigenwaves as subcar-
riers, that are jointly orthogonal across its DoF (e.g., space,
time-frequency and Doppler-delay domains). Therefore MEM
modulated symbols, when transmitted over multi-dimensional
channels do not interfere with each other, without any ad-
ditional precoding at the transmitter or special detectors at
the receiver. We further propose a ZP-MEM method that
discards Eigenwaves with lower eigenvalues to reduce the
noise enhancement, providing a trade-off between BER and
throughput. Evaluation results show that ZP-MEM outperforms
OTFS by 2 orders magnitude in BER at 15dB SNR in rapidly
time-varying channels. Furthermore, we show the performance
of MEM under Eigenwaves error using a novel metric called
Soft Orthogonality and under zero error, it achieves the ideal
BER and throughput without any interference across all DoF.
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(a) N = 12 (b) N = 14 (c) N = 16 (d) N = 18 (e) N = 20

Figure 10: BER of MEM over SO and SNR for different numbers of Eigenwaves

(a) N = 12 (b) N = 14 (c) N = 16 (d) N = 18 (e) N = 20

Figure 11: Throughput of MEM over SO and SNR for different number of Eigenwaves

APPENDIX A
PROOF OF THEOREM 2

Proof. Given the ET operation ET[·] defined by (34) and
the IET operation IET[·] defined by (35) with respect to
eigenwaves ϕn(Γ), we have

ET
[
IET

[
xn

]]
=

∫ ∞∑
i=1

xn′ϕ∗n′(Γ)ϕn(Γ) dΓ

=

∫
xn|ϕn(Γ)|2 dΓ+

∫ ∞∑
n′ ̸=n

ϕ∗n′(Γ)ϕn(Γ) dΓ=xn (54)

Meanwhile, we also have

IET
[
ET

[
x(Γ)

]]
=

∞∑
n=1

(∫
x(Γ)ϕn(Γ) dΓ

)
ϕ∗n(Γ)

=

∞∑
n=1

(∫ ∞∑
n′=1

xn′ϕ∗n′(Γ)ϕn(Γ) dΓ

)
ϕ∗n(Γ)

=

∞∑
n=1

(∫
xn|ϕn(Γ)|2+

∞∑
n′ ̸=n

xn′ϕ∗n′(Γ)ϕn(Γ) dΓ

)
ϕ∗n(Γ)

=

∞∑
n

xnϕ
∗
n(Γ)=x(Γ) (55)

Both xn=ET
[
IET

[
xn

]]
and x(Γ)=IET

[
ET

[
x(Γ)

]]
hold, in-

dicating that ET and IET is a transform-pair.

APPENDIX B
PROOF OF COROLLARY 2

Proof. By the definition of ET[·] and IET[·], we have

ET
[
ax(Γ)+by(Γ)

]
=

∫ (
ax(Γ)+by(Γ)

)
ϕn(Γ) dΓ

=

∫
ax(Γ)ϕn(Γ) dΓ+

∫
by(Γ)ϕn(Γ) dΓ

=aET
[
x(Γ)]+bET

[
y(Γ)

]
(56)

IET
[
axn+byn

]
=

∞∑
n=1

(
axn+byn

)
ϕ∗n(Γ)

=

∞∑
n=1

axnϕ
∗
n(Γ)+

∞∑
n=1

bynϕ
∗
n(Γ)=aIET

[
xn]+bIET

[
yn

]
(57)

where (56) and (57) are the very definitions of linearity.

APPENDIX C
PROOF OF COROLLARY 3

Proof. Applying ET to x(Γ) and y∗(Γ) in the LHS of (37),∫
x(Γ)y∗(Γ) dΓ=

∫ ∞∑
n=1

xnϕ
∗
n(Γ)

∞∑
n′=1

y∗n′ϕn′(Γ) dΓ

=

∫ ∞∑
n=1

xny
∗
n|ϕn(Γ)|2 +

∞∑
n

∞∑
n′ ̸=n

xny
∗
n′ϕ∗n(Γ)ϕn′(Γ) dΓ

=

∞∑
n=1

xny
∗
n (58)

which is Parseval’s Theorem in Eigenwave Transform.
Let y(Γ) = x(Γ), then (58) is rewritten as,∫
|x(Γ)|2 dΓ=

∑∞
n=1 x

2
n

APPENDIX D
DEDUCTION OF (50)

∫∫
|K(Z; Γ)|2 dZ dΓ=

∫∫ ∣∣∣∣∣
∞∑
n=1

σnϕn(Γ)ψn(Z)

∣∣∣∣∣
2

dZ dΓ

=

∫∫ ∞∑
n

σ2
n |ϕn(Γ)|2︸ ︷︷ ︸

=1

|ψn(Z)|2︸ ︷︷ ︸
=1

+

∞∑
n′ ̸=n

σnσn′ϕn(Γ)ϕn′(Γ)∗ψn(Z)ψn′(Z)∗︸ ︷︷ ︸
=0

dZ dΓ=

∞∑
n=1

λn
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