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Abstract—Eigenfunctions are widely used to characterize ker-
nels in many data-driven analyses. In machine learning, eigen-
function decomposition is primarily based on Mercer’s theorem,
which requires the kernel to be symmetric. This is difficult
to satisfy in communication systems as the channel kernel is
usually asymmetric due to the different downlink and uplink
propagation environments. High Order Generalized Mercer’s
Theorem (HOGMT) provides a principled way to decompose
any multi-dimensional asymmetric kernel into eigenfunctions. To
manage the complexity of the eigen-decomposition, we propose
an equivalent Neural Network (NN) for decomposing a gen-
eral channel kernel. This is further improved by applying the
Augmented Lagrangian Method (ALM) to reduce the training
time and parameter tuning, which avoids additional tuning
rounds when the size of the kernel or the number of eigen-
components change depending on the wireless environment. We
validate the adaptability of the proposed NN and its accu-
racy using simulations in PyTorch. The code is available at
https://github.com/ZBZou/HOGMT-ALM/tree/main.

Keywords—Eigen-decomposition, Adaptive Neural Networks.

I. INTRODUCTION

Eigen-decomposition is at the core of many communication

system problems such as equalization, channel characteriza-

tion and Channel State Information (CSI) feedback. In the

Multiple-Input Multiple-Output (MIMO) systems, Singular

Value Decomposition (SVD)-based precoding decomposes the

spatial channel matrix into eigenvectors that are used as

parallel channels to achieve sum rate capacity [1]. However,

spatial channel matrices fail to capture joint interference

over multiple dimensions1.Therefore, in Linear Time-Varying

(LTV) channels designing waveforms using eigenfunctions of

the channel is known to be optimal [2]. However, eigen-

decomposition by Mercer’s theorem is only limited to the

symmetric kernels 2, which is not always satisfied as the

wireless channel kernel is a random operator [5].

Multi-dimensional kernels and its decomposition: The

general wireless channel is represented as an asymmetric

kernel from first principles [6], [7], which reflects the map-

ping relation from the transmitter and the receiver. Recently,

High Order Generalized Mercer’s Theorem (HOGMT) [8] has

been proposed as a mathematical technique to decompose

multi-dimensional asymmetric kernel into jointly orthogonal

1In the context of the channel representation, multi-dimension includes
time, space, frequency, delay-Doppler domains, etc.

2A kernel satisfying K(x, y)=K(y, x) is considered as symmetric. Oth-
erwise, it is an asymmetric kernel [3], [4].
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Figure 1: Partial representations of the spatio-temporal chan-

nel, and the decomposed spatio-temporal eigenfunctions.

eigenfunctions. This enables precoding and modulation using

eigenfunctions to transmit symbols over independent orthog-

onal subchannels in the eigen-domain, avoiding interference

from other symbols across all the DoF. Figure 1 shows an

example of eigen-decomposition by HOGMT, where “time-

domain” shows the time-delay profile, the space-domain shows

the channel gain between MIMO antennas and the space-

time-domain shows the delay profile across antennas. Unlike

1-dimensional eigenvectors in the MIMO (spatial) channel

matrix, the spatio-temporal eigenfunctions are represented by

2-dimensional waveforms to achieve joint orthogonality in the

time-space-domain. In contrast to Fourier bases, commonly

used in OFDM and OTFS, eigenfunctions are not pre-defined,

resulting in the following open problem [5, Chapter 2.5]:

“Eigenfunctions are strictly unstructured, which makes them

computationally expensive for practical purposes.”

Neural Network (NN) offers a distinct edge over linear

methods as it inherently captures non-linear relationships

among hidden variables with practical computational complex-

ity. This encourages us to adopt NNs for the implementing

eigen-decomposition by HOGMT. Current NN-based eigen-

decomposition methods are based on Mercer’s theorem or

SVD, which provide eigenfunctions of symmetric kernels

or the eigenvectors of a spatial channel matrix [9]. Conse-

quently, these methods are incapable of decomposing multi-

dimensional asymmetric channel kernels, as seen in rapidly

time-varying MIMO channel kernels, MIMO-OFDM channel

kernels, MIMO-OTFS channel kernels [10]. Meanwhile, exist-

ing NNs often treat constraints of a given optimization problem

as a fixed penalty, which suffer from exhaustive tuning when



the size of the channel kernel and the number of eigenfunctions

change. In this work, we adopt the Augmented Lagrangian

Method (ALM) [11] to automatically adapt the Lagrange

multiplier during the training process, making the NN adapt

to various wireless scenarios. Therefore, the contributions of

this paper are as follows:

• We design a baseline NN (HOGMT-Base) to decompose

multi-dimensional channel kernels based on HOGMT.

• We improve the baseline model to HOGMT-ALM by

incorporating ALM to adapt to different kernel types and

number of eigenfunctions.

• We provide a complexity comparison with the SoTA to

show the efficiency of HOGMT-ALM.

• We define a metric, soft orthogonality to measure the

degree of the orthogonality of the eigenfunctions. This is

used to evaluate the accuracy of the models in PyTorch.

II. PRELIMINARIES AND BACKGROUND

A. General Channel Kernel

The time and space-domain continuous input-output rela-

tions for LTV channel [12] is given by,

r(t)=

∫

g(t, τ)s(t−τ) dτ ; r(u)=

∫

h(u, k)s(u−k) dk (1)

where g(t, τ) and h(u, k) are transfer functions in the time and

space-domains. By Fourier transform, the time-domain can be

transferred to the frequency-domain resulting in the transfer

function for OFDM. However, the general form of the input-

output relation of LTV channels is expressed as,

r(Z)=

∫

H(Z; Γ)s(Z−Γ) dΓ=

∫

K(Z;Z ′)s(Z ′) dZ ′ (2)

where H(Z; Γ) is the multi-dimensional transfer function

(e.g., in the time-varying MIMO channel: (Z; Γ)=(u, t; k, τ),
while in the MIMO-OFDM system, (Z; Γ)=(u, f ; k, ν)).
K(Z,Z ′)=H(Z,Z−Z ′) is the general channel kernel as de-

fined in [6], [12]. Note that K(Z,Z ′) is considered asymmet-

ric for the general channel, i.e., K(X,Y ) ̸=K(Y,X).

B. High Order Generalized Mercer’s Theorem

Kernel decomposition Mercer’s theorem is formulated as,

K(t, t′)=

∞
∑

n=1

λnφn(t)φn(t
′) (3)

where, φn denotes the eigenfunction and λn is the corre-

sponding eigenvalue. HOGMT generalizes Mercer’s Theorem

to multi-dimensional asymmetric kernels in (2), into low-

dimension, jointly orthogonal eigenfunctions expressed as,

K(Z;Z ′)=

∞
∑

n=1

σnψn(Z)φn(Z
′) (4)

where E{σnσ
′
n}=λnδnn′ . λn is the n-th eigenvalue and

ψn(Z) and φn(Z
′) are orthonormal eigenfunctions, i,e.,

∫

φn(Z
′)φ∗n′(Z ′)dZ ′=δnn′ ;

∫

ψn(Z)ψ
∗
n′(Z)dZ=δnn′ (5)

These eigenfunctions are referred as dual eigenfunctions that

exhibit the important duality property,
∫

K(Z;Z ′)φ∗n(Z
′) dZ ′ = σnψn(Z) (6)

This property indicates that the eigenfunctions are trans-

ferred to their dual eigenfunction scaled only by the channel

gains when transmitting over the channel.

C. Augmented Lagrangian Method

ALM [11] is an adaptive technique to solve an equality-

constrained optimization problem. Consider an optimization

problem under M constraints

minimize F (x) s.t. : ci(x)=0, ∀i = 1, 2, . . . ,M (7)

where x∈Rn. The corresponding Lagrangian function is,

L(x, α)≜F (x) +

M
∑

i=1

αici(x) (8)

where α ≜ [α1, α2, ..., αM ]⊤ are the Lagrange multipliers.

ALM modifies (7) in to the following problem,

minimize F (x) +
µ

2
∥c(x)∥2

subject to: ci(x)=0, ∀i = 1, 2, . . . ,M
(9)

where, µ is the penalty parameter and

c(x)≜[c1(x), c2(x), . . . , cM (x)]⊤∈RM . Therefore, the

Lagrangian function of (9) is given by,

Lµ(x, α) ≜ F (x) +
µ

2
∥c(x)∥2 +

M
∑

i=1

αici(x) (10)

(10) is called the augmented Lagrange function. It can be

shown that, both problems (7) and (9) share the same optimum

solution x∗ and the optimum Lagrange multipliers α∗ [11]. In

all, ALM transforms the constrained optimization in (7) into

an unconstrained problem in (10).

III. KERNEL DECOMPOSITION WITH NN

A. Approximating Kernel with Finite Eigenfunctions

Theoretically, both Mercer’s Theorem and HOGMT de-

compose the kernel into infinite eigenfunctions. However, we

can only operate a finite number of eigenfunctions in reality.

Therefore, we convert the kernel decomposition problem to

the approximation problem by N eigenfunctions as

argmin
K̂

E
{

∥K(Z;Z ′)− K̂(Z;Z ′)∥2
}

(11)

where K̂(Z;Z ′) is the approximated kernel as

K̂(Z;Z ′)=

N
∑

n=1

σnψ̂n(Z)φ̂n(Z
′) (12)

with the orthogonal constraints
∫

φ̂n(Z
′)φ̂∗n′(Z ′)dZ ′=δnn′ ;

∫

ψ̂n(Z)ψ̂
∗
n′(Z)dZ=δnn′ (13)
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Figure 2: Performance of HOGMT-Base changes over number of eigenfunctions N and penalty α. Dashed and solid lines

indicate the convergence of the NN during training and testing respectively.

In this work, we focus on asymmetric kernels unless other-

wise specified because the symmetric kernel is just a special

case of that. Unlike Fourier methods that provide complex

exponentials as subcarriers, which are independent in time-

invariant channels only, eigenfunctions of the channel kernel

remain independent in all types of channels. However, since

the eigenfunctions are not pre-defined, computing these require

high computational complexity, which limits their practical

implementation [13]. We postulate that the output of a neural

network that solves the MMSE problem in (11) converges to

eigenfunctions, making it practical.

B. HOGMT-Base: Implementing HOGMT with NN

We design an equivalent NN, HOGMT-Base with the

equality-constrained objective function (14a) to solve (11),

whose outputs converge to the eigenfunctions decomposed by

HOGMT from the universal approximation theorem [15], [16].

L=J+

2
∑

i=1

αiΩi (14a)

where αi is the penalty for the constraint Ωi and J is the

MSE optimization in (11)

J=
1

B

B
∑

b=1

∥Kb −
∑N

n=1 σ̂n,bΨ̂n,b ⊗ Φ̂n,b∥
2

∥Kb∥2
(14b)

where Kb is the input kernel. B is the batch size. Ω1 and Ω2

are the regularizations for the orthogonality constraints in (13),

Ω1=
1

B

B
∑

b=1

N
∑

n=1

N
∑

n′ ̸=n

∥⟨Φ̂n,b, Φ̂n′,b⟩∥ (14c)

Ω2=
1

B

B
∑

b=1

N
∑

n=1

N
∑

n′ ̸=n

∥⟨Ψ̂n,b, Ψ̂n′,b⟩∥ (14d)

Comparing (14a) and (8), L is a Lagrange function with αi

as multipliers.

The total loss is a general evaluation metric for NNs,

which depends on the sum of all eigenvalues for eigen-

decomposition [17]. However, in the communication systems,

orthogonality is the most critical metric for interference can-

cellation. However, any NN-based method cannot achieve

strict orthogonality as this hard decision will limit the freedom

of the output space and lead to over-fitting. Therefore, we

define a new metric, soft orthogonality as follows,

Definition 1. Soft orthogonality of the eigenfunction set {Φ̂},

O(Φ̂) =
1

N(N − 1)

N
∑

n=1

N
∑

n′ ̸=n

∥⟨Φ̂n, Φ̂n′⟩∥ (15)

where O(Φ̂)=0 indicates that the eigenfunctions obtained from

the NN, {Φ̂} are strictly orthogonal. Similarly, O(Ψ̂) denotes

the soft orthogonality for eigenfunctions {Ψ̂}.

We validate this baseline model, using spatio-temporal

channel kernels, which is detailed in Section V. Figure 2 shows

the performance of HOGMT-Base for N=10 and N=15
cases, with two penalty values for each. Although it shows

convergence with respect to both the total loss and the soft

orthogonality with appropriate penalties, it has two limitations:

(a) The choice of the penalty (αi) greatly affects the perfor-

mance of HOGMT-Base even for the same value of N .

For example, in Figure 2a, for N=10, the total loss for

α=0.01 converges but that for α=0.05, does not.

(b) If N changes, the same penalty cannot ensure conver-

gence. For example, in Figure 2a, 2b and 2c we find that

the total loss for N=10 and N=15 are not comparable for

the same α=0.01. This will require tuning of the penalty

to α=0.005 for similar performance.

These limitations motivate us to design an adaptive version of

HOGMT-Base, which ensures the convergence of the eigen-

functions without unnecessary tuning for different scenarios.

IV. ADAPTIVE NEURAL NETWORK BASED ON ALM

A. HOGMT-ALM: ALM Based NN for HOGMT

In practice, both the required number of eigenfunctions and

the channel environment (such as users) may vary, leading to

different kernel sizes and N , which require changes in the NN

architecture and tuning of the Lagrange multiplier (penalty),

α. The fundamental reason is that any α, is no longer optimal

for the Lagrangian function when its optimal solution changes

for a different input. Therefore, training HOGMT-Base with a



Table I: Complexity of eigen-decomposition methods. HOGMT-ALM and HOGMT-Base both have the least complexity

Channel Kernel Type Method Complexity Parameters

Spatial channel matrix

H ∈ CNt×Nr

SVD O(min(NtN2
r , N

2
t
Nr))

N : Number of eigen-components
Nd: The order of dimensions
NL: Number of layers

SVD-DNN [9] O(max(2N2NtNr, 2N2N2
t
, 2N2N2

r ))

Spatio-temporal channel tensor

K ∈ C
Lu×Lt×L

u′×L
t′

HOSVD [14] O(Nd max(LuLtLu′ , LuLtLt′ , LtLu′Lt′ )
3)

HOGMT [8] O(min(LuLt(Lu′Lt′ )
2, (LuLt)2Lu′Lt′ ))

HOGMT-Base O(2NNLLuLtLu′Lt′ )

HOGMT-ALM O(2NNLLuLtLu′Lt′ )

fixed penalty for different kernel types does not guarantee con-

vergence, which requires dynamic adaptation of the Lagrange

multipliers during the training. Therefore, we incorporate the

ALM method and modify the objective of HOGMT-Base as,

L=J+

2
∑

i=1

A⊺

i Ω
′
i +

µ

2

2
∑

i=1

∥Ω′
i∥

2 (16)

where, µ is the penalty parameter,

Ai ≜ [αi,1, αi,2, ..., αi,K ]⊺ ∈ R
2K (17)

is the vector containing the Lagrange multipliers and

Ω′
1≜

1

B

B
∑

b=1

[

R(Φ̃1,b), I(Φ̃1,b), ...,R(Φ̃K,b), I(Φ̃K,b)
]⊺

Ω′
2≜

1

B

B
∑

b=1

[

R(Ψ̃1,b), I(Ψ̃1,b), ...,R(Ψ̃K,b), I(Ψ̃K,b)
]⊺

(18)

where, R(·) and I(·) are the real and imaginary parts respec-

tively. Φ̃k,b and Ψ̃k,b are the inner products of one pair of

(Φ̂n,b, Φ̂n′,b) and (Ψ̂n,b, Ψ̂n′,b) for n ̸=n′ respectively. There

are K=N(N − 1) pairs for such eigenfunction set.

The main idea behind HOGMT-ALM is to get the opti-

mal solution for the constrained optimization problem (11)

by unconstrained optimization of the augmented Lagrangian

function (16). This is achieved by iteratively updating the NN

model parameters and Ai based on the gradient of L. During

training, the model is updated using well-known optimizers

like Stochastic Gradient Descent (SGD) or Adam, while Ai is

updated as follows,

Ak+1
i =Ak

i + µkΩ′
i (19)

where µk is used to control the learning rate of the model.

The ALM theory requires dynamic update of µ in order to

adapt to the current constraint. Otherwise, it leads to either too-

small or too-large update rate for Ai. [11] provides a dynamic

update criteria for µ. This update step depends on the current

conditions of the constraint. Predefined parameters β>1 and

γ<1 ensure that µ increases when the constraints Ω′
1 and Ω′

2

does not decrease over the iterations. Therefore, by coupling

the NN training with the update of the Lagrange multipliers

in (19) and the parameter µ, HOGMT-ALM can ensure that

the Lagrange multipliers are always optimized towards the

optimal NN model, which solves the problem of fixed penalty

in HOGMT-Base mentioned above.

Algorithm 1 is used for training HOGMT-ALM with an

initialization of the inputs, A1, A2, µ and γ. Lines 3-9 are steps

for kernel processing and parameter calculation in each batch

according to (16)-(18). Lines 10-11 updates the Lagrange

multipliers according to the constraints and µ, where µ is

further updated in lines 12-16.

Algorithm 1 HOGMT-ALM Training

1: Inputs A
[0]
1 , A

[0]
2 , µ[0], γ ;

2: for i← 0 to training epochs do

3: for mini batches← 0 to data size/batch size do

4: xb ← split real and imaginary parts of Xb

5: Yb=NN Model(xb)
6: Derive σ̂n,b, Φ̂n,b and Ψ̂n,b for each eigenfunction

7: Calculate J according to (14b)

8: Calculate Ω′
1 and Ω′

2 according to (18)

9: end for

10: A
[i+1]
1 ← A

[i]
1 + µ[i]Ω′

1

11: A
[i+1]
2 ← A

[i]
2 + µ[i]Ω′

2

12: if ∥Ω′
1∥

[i] + ∥Ω′
2∥

[i] > γ(∥Ω′
1∥

[i−1] + ∥Ω′
2∥

[i−1]) then

13: µ[i+1] ← βµ[i]

14: else

15: µ[i+1] ← µ[i]

16: end if

17: end for

B. Complexity Analysis

The computational complexity for eigenvector or eigenfunc-

tion decomposition is shown in Table I. Both SVD and DNN-

SVD are designed to decompose 2-D matrices only. While

High-Order SVD (HOSVD), HOGMT and proposed methods

decompose multi-dimensional tensors. The relationship be-

tween SVD, HOSVD and HOGMT can be found in Lemma 3

of [8]. Since both HOGMT-Base and HOGMT-ALM use fully

connected architectures (Section V), their time complexities

are the same, which depends on the number of layers (NL), the

size of the input (2LuLtLu′Lt′ for a complex-valued NN) and

the size of the output (N ). It’s clear that proposed NNs have

less complexity than HOSVD. Meanwhile, for a fixed N and

NL, the complexity of both HOGMT-Base and HOGMT-ALM

increase at a much slower rate than HOGMT with increasing

size of the input tensor.

V. HOGMT-ALM IMPLEMENTATION

NN architecture: To decompose a spatio-temporal channel

kernel, K(u, t;u′, t′)∈CLu×Lt×L
u′×L

t′ with L≜LuLtLu′Lt′
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Figure 3: Statistics of PDP change over space and time

elements, the HOGMT-Base is designed with 4 fully con-

nected, feed-forward layers. However, this model requires real

inputs and outputs only. As a result, the L elements of the

kernel are split into real and imaginary parts at the input. The

dimension of each layer is as follows: input and output layers

have 2L and Ñ≜N(1+LuLt+Lu′Lt′) nodes, respectively,

while the two hidden layers have 2L and L̃≜L+Ñ nodes.

The LeakyRelu activation function with a negative slope of

0.1 is used for the hidden linear layers. This is a tuned slope

and is fixed for all the NNs in this work. The architectures of

HOGMT-ALM and HOGMT-Base are kept the same for correct

evaluation and comparison.

Data Generation: We generated 5120 time-varying MIMO

channel kernels. Each kernel represents Lu×Lu′ antennas for

Lt=Lt′ moments or time indexes, where Lu=Lu′=4 and

Lt=Lt′=5. The delay taps are randomly chosen between 3
and 5. The distribution of the Power Delay Profile (PDP)

at each moment changes over space and time as shown in

Figure 3a and Figure 3b, respectively. A training-test split of

80%-20% is used to evaluate the model and we do not restrict

the dimensions and size of the kernels to show the generality

of the eigen-decomposition process.

Training: Figure 4 shows how various training-related pa-

rameters are updated in every batch and epoch while training

HOGMT-ALM. The training is done as mini-batches where

the chosen mini-batch size is B=16. The Adam optimizer

with a learning rate of 1×10−5 is used for training. Figure 4

shows that there are some adaptive parameters involved in the

training, such as A1, A2 and µ, that depend on Ω′
1 and Ω′

2.

These parameters are updated during each epoch, relative to

the Ω′
1 and Ω′

2 of the last mini-batch of the previous epoch

using (19) for A1 and A2 and Algorithm 1 lines 12-16 for µ
with γ = 0.75 and β= 1.01 and initial value for µ as 0. The

initial values of Ai are set to 0 as it provides flexibility in

choosing the rest of the parameters.

VI. EVALUATION AND RESULTS

Adapting to varying number of eigenfunctions: We validate

the HOGMT-ALM design using the above dataset for N=10,

N=15 and N=20 cases with the same initialization of A1,

A2, µ and γ. Figure 5 shows that both total loss and soft

orthogonality converge without tuning the penalty, which

addresses the limitation (a) above. Further, the convergence

Model 
Update

Each Batch Each Epoch 

Update Lagrange Multipliers
Algorithm 1

(Line # 10-11)

NN
Model

Update Penalty
Algorithm 1

(Line # 12-16)
Calculate 

Figure 4: Adaptive Training of HOGMT-ALM, which has two

loops: (1) The outer loop (“Each Epoch”) updates the La-

grange multipliers Ai and the penalty parameter µ, and (2)

The inner loop (“Each Batch”) updates the NN parameters.

remain unchanged with different N as well, which removes

limitation (b). It is also observed that unlike HOGMT-Base,

HOGMT-ALM begins to converge around the same time (num-

ber of epochs) for all N , which makes the convergent behavior

more predictable. From a practical system implementation

viewpoint, this property provides a reference for completion

time (in epochs) for the training, which eliminates waiting for

uncertain epochs for the model to converge when N changes.

Figure 5a shows that larger N results in smaller values of total

loss. This is because, more eigenfunctions can approximate

the kernel with higher accuracy [17]. Figure 5b and 5c show

that the two soft orthogonality constraints also converge to

less than 0.001 within 500 epochs, which cannot be otherwise

guaranteed by the baseline model, HOGMT-Base.

Adapting to degenerate cases: The above results show the

performance of HOGMT-ALM for 4-D kernels. To compare

with the SoTA, SVD-DNN [9], we generate 16×16 spatial

channel matrices as the dataset (size =50000), since SVD

is applicable 2-D matrices only. We use the same hyper-

parameters for HOGMT-ALM as in the 4-D channel kernel

case. The penalty is set at α=0.01 for both HOGMT-Base and

SVD-DNN, which is empirically the best penalty as shown in

Figure 2 for N=10 case. In Figure 6, HOGMT-Base achieves

similar performance as HOGMT-ALM in this degenerate (low-

dimension channel kernel) case with a proper penalty. How-

ever, HOGMT-ALM outperforms SVD-DNN indicating that

HOGMT-ALM is adaptive to different channel types without

tuning the penalty. Further, Figure 6b and Fig 6c show that

for SVD-DNN, O(Φ̂) is around 0.0275 and O(Ψ̂) is around

0.003 which further increases over epochs. It means SVD-

DNN is unable to maintain the orthogonality constraint, which

is critical for eigenfunction based waveforms. Specifically, the

large soft orthogonality will induce interference as data sym-

bols are not transmitted over independent subchannels. More

comparison for larger kernels is shown in the Appendix [18].

VII. DISCUSSION AND APPLICATIONS

The choice of N : As shown in Figure 5a and Table I, N
provides a trade-off between the total loss and complexity,

where total loss is inversely proportional to the sum of the
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Figure 5: Performance of HOGMT-ALM for 4-D channel kernels with N=10, 15, and 20. Dashed and solid lines indicate the

convergence of the NN during training and testing respectively
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Figure 6: Performance comparison between HOGMT-ALM, HOGMT-Base, and SVD-DNN for 2-D channel kernels with N=10.

Dashed and solid lines indicate the convergence of the NN during training and testing respectively

eigenvalues according to (11). However, in some applications

such as decomposing the channel into orthogonal subchannels

and transmitting symbols using those, the gain (given by the

eigenvalue) of each subchannel (represented by the eigenfunc-

tion) is more important than sum itself. In this case, N can

be chosen as the largest integer that satisfies the a specific

limit on the eigenvalues, as shown in the example below, The

error rate for M-QAM modulated symbol transmitted over the

eigenfunction with gain σ
N̂

is3,

Pr(M,γ, σN ) ≈ 4Q
(

σN
√

3γ/M − 1
)

(20)

where γ is the SNR. Given the desired error probability bound

β, then N is chosen as the largest integer satisfy the constraint

Pr(M,γ, σN ) < β, i.e.,

σN > Q−1(β/4)/
√

3γ/(M−1) (21)

which means the error probability of the symbol that is

transmitted over the N -th eigenwave should be less than β.

SVD-based Precoding for MIMO channels: The eigen-

decomposition is widely applied in precoding for spatial mul-

tiplexing in the form of SVD. In practice, both HOGMT-ALM

and SVD-DNN can be employed to produce the same eigen-

functions as SVD. However, eigen-decomposition by neural

3The standard approximate error rate for M-QAM modulated symbol is

given by [19] as 4Q(
√

3γ/M − 1). It is straightforward to derive it for
symbols with the subchannel gain σN as in (20)

Figure 7: BER of SVD-based Precoding implemented by NNs

networks will lead to a non-zero value of soft orthogonality

(O(Ψ̂) in III-B), which varies depending on the objective func-

tion enforced by the NN. Figure 7 shows the general behavior

of this phenomena for decomposing a 20×20 MIMO channels,

where for any given SNR, the BER is lower for smaller values

of O(Ψ̂). In Figure 6, we show shows that HOGMT-ALM

achieves O(Ψ̂) ≈ 0 for decomposing 2-D channel matrices,

while SVD-DNN achieves O(Ψ̂) ≈ 2 × 10−3, resulting in

much higher BER.

VIII. CONCLUSION

We proposed an equivalent NN called HOGMT-Base

for implementing HOGMT, which decomposes the multi-



dimensional asymmetric channel kernel into eigenfunctions.

Then we improve it to HOGMT-ALM by incorporating ALM.

Both proposed NNs achieve lower approximation error and

soft orthogonality than SoTA with lower complexity as shown

in Table I, while HOGMT-ALM is adaptive to different kernel

types and the number of eigenfunctions. This work solves an

important open problem posed in Section I, which creates the

opportunity to apply eigenfunctions for real-time, over-the-

air communication in fast time-varying wireless channels by

employing eigenfunction-based waveforms. The adaptable and

computationally efficient NN also paves the way for prototype

hardware [19] and experimentation.
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