
  

1 INTRODUCTION 
In recent years, there has been an increasing interest in 
group targets tracking because of its significant role in 
military and civilian fields. The group targets are composed 
of a number of objects moving in a coordinated and 
interacting fashion [1]. Different from multiple targets, the 
group targets can get many measurements, even if one target 
only produces one measurement. According to the character 
of the group targets, multiple targets in a group should be 
seen as a whole. That is to say, a group can produce more 
than one measurement. Thus the conventional algorithms 
based on the assumption that one target only gives one 
measurement are no longer valid. 
Gaussian Mixture Probability Hypothesis Density 
(GM-PHD) filter is used to track group targets under the 
linear condition [2]. In [3], Koch uses group centroid and its 
diffusion shape to describe the whole state of group, and 
proposes a new group targets tracking algorithm based on 
the classic Bayesian framework. But, the algorithm has not 
considered the clutter and only can realize a single group 
target tracking. Baum et al use elliptic random hypersurface 
model to model the measurements source and describe 
every group as an ellipse [4]. Combined with the random 
hypersurface theory, Zhang et al propose a GM-PHD filter 
for group targets tracking based on elliptic random 
hypersurface model in the literature [5]. In [6], the authors 
propose a partly resolvable group target tracking algorithm 
using SMC-PHD and realize the tracking of the centroid and 
shape of the group targets. However, the group structure 
information has not been mentioned in most algorithms 
above. 
In [7], an evolving networks model is introduced for group 
targets, which can describe the merging, splitting and other 
motion patterns of groups well. But, it uses the traditional 
Joint Probabilistic Data Association (JPDA) algorithm to 
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execute data association, so it can’t handle the situation that 
the number of targets changes. What’s more, particle 
filtering is used to estimate the state of the group targets in 
the algorithm, it can lead to a large operation load. In view 
of these problems, the literature [8] proposes a Box Particle 
Probability Hypothesis Density (BP-PHD) group targets 
tracking algorithm based on the evolving networks model. 
Compared with SMC-PHD group targets tracking algorithm, 
it greatly reduces the number of particles and decreases the 
amount of computation. And it also can deal with the varied 
number of targets. Unfortunately, it lacks the ability to 
distinguish different tracks from different groups and it is 
also easily affected by the instability of clustering. It 
inspires us to add labels to box particles and realize PHD 
filter based on labeled box particle. 
In this paper, evolving networks model is used to establish 
group dynamic model and update the group structure. 
LBP-PHD filtering algorithm based on Random Finite Set 
(RFS) is proposed to estimate the number of targets and the 
targets state. And further, the number of group and the 
group state can be obtained. At the same time, it can also 
differentiate the tracks of targets. 

2 EVOLVING NETWORKS MODEL 
Group target tracking includes two aspects. One is to 
estimate the motion state of individual target in a group, the 
other is to describe the interaction relationship among 
different targets in a group. The evolving networks model 
uses the vertices to represent different targets, and uses the 
edges to represent the relationship among different targets. 
Thus, the group structure can be denoted by a graph G [7]. 
Consider N targets composing the set of vertices 

{ }1, , N= ⋅⋅⋅V v v , the relationship among different targets 
is represented by the edges denoted by 

( ) ( ), ,i ji j =E v v .Each vertex iv is associated with the 

target state ix  and its corresponding variance iP . Then, 
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the whole group structure can be denoted by 
{ }( )1, , ,N= ⋅⋅⋅G v v E . In order to quantitatively describe 

the presence or absence of an edge between two nodes, we 

calculate the Mahalanobis distance ( ),kd i j which is 
computed from the estimated positions and the velocities of 
the targets between these two considered nodes and evaluate 
whether it exceeds a chosen decision threshold ε . If 

( ),kd i j ε , then ( ),i j ∈v v E .That means these two 

nodes are connected. In this representation, a group 
corresponds to a connected component of the graph 
structure. So the group structure also can be denoted by 

{ }1, ,
Gn

= ⋅⋅⋅G g g ,where the group ig  are the connected 

components of G and Gn  is the number of groups in 

G .In a word, the aim is to determine an evolution model 

1( , )k k kf −=G G X  for group structure, where the vector 

,1 ,{ , , }k k k N=X x x  contains the state vectors of all the 

targets and  f denotes the proposed evolution model. 

In order to express more intuitively the relationship among 
every target in a group, the group information can be saved 
into an adjacency matrix. And it can be calculated by the 
following equation: 

( ) ( )
( ) ( )

( ) ( )

0 1, 2 1,
2,1 0 2,

,1 , 2 0

k k k

k k k
k

k k k k

a a N
a a N

a N a N

=A (1) 

Where ( ),ka i j  is computed as follows: 

( ) ( )1, , ,
,

0,
k

k
d i j i j

a i j
otherwise

ε≤ ≠
= (2) 

Thus, the group structure estimation can be achieved by 
calculating a symmetric adjacency matrix kA . In addition, 
we can get the number of group by computing the number of 
the connected components in adjacency matrix kA . 

3 LABELED BOX PARTICLE FILTER 
Box particle filter [9] is a nonlinear filter combining particle 
filter and interval analysis. In the two-dimensional plane, a 
nonzero and controllable rectangular area with the 
maximum error known is defined as a box particle. Instead 
of the traditional point particle, it uses the box particle to 
approximate the posterior probability density function. 
However, box particle filter can only get the estimated state 
set of target. It fails to distinguish different target and obtain 
each target’s track. 
In view of the above problem, labeled box particle filter is 
proposed in this paper. It assigns a unique label for each box 
particle, and the box particles from the same target have the 
same label. Thus, each target can be resolved by different 
labels. Further, each target’s track can be obtained by 

correlated the adjacent time estimated state according to the 
labels. The difference between box particle and labeled box 
particle filter is depicted in Fig.1 (a) and (b). 

  
  (a)                                             (b)

Fig.1 box particle and labeled box particle 
 
In Fig.1(a), three rectangles represent respectively the 
estimated state sets at 1t 2t and 3t three circles represent 
respectively the estimated states for three targets. It can be 
seen that the estimated states for three targets obtained by 
box particle filtering are unresolved and tracks for three 
targets can not be formed. Labeled box particle filtering 
solves this problem by adding a unique label to each box 
particle. The target state is extracted according to the labels. 
In Fig.1 (b), it is found that different targets can be 
distinguished by different labels, and tracks are formed by 
related the adjacent time estimated states which have the 
same labels. Last but not least, because labeled box particle 
filtering extracts the target state according to the different 
labels, unlike box particle filtering, it can avoid the 
influence caused by clustering instability. 

4 GROUP TARGET TRACKING WITH 
EVOLVING NETWORKS MODEL AND 
LBP-PHD FILTER 

Multiple group targets tracking algorithm based on the 
evolving networks model and LBP-PHD filter is 
summarized as follows. 

4.1 Initialization 

Supposing that there are 0N  targets at initial moment, their 

state set is 01
0 0 0{ , , }N=X x x and each target is 

sampled with boxN  box particles. The box particles from 
the same target have the same labels, and the initialized 
labeled box particles set is 0

0 0 0 1,{ [ ]} boxN Ni i i
il ,w ⋅
=x , 

0 01 il N≤ ≤ . 0
il  and 0

iw  are respectively the 
corresponding label and weight. Finally, according to the 
known initialized targets state set, initialized group structure 

0G  is obtained by the evolving networks model. 

4.2 Adding the new born labeled box particles 

The labeled box particles set at time 1k − is denoted by 
, ,

1 1 1
,

1,{ [ ]} pNper i per i i
k k k

per
il ,w− − − =x .The new born labeled box 

particles set , , ,
1 1 1 1,{ [ ]} bNbir i bir i bir i

k k k il ,w− − − =x is got from the 

measurements set of the previous time, where ,
1 0bir i

kl − = . 
More detailed introduction about new born box particles 

The 30th Chinese Control and Decision Conference (2018 CCDC) 4047

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on September 14,2022 at 17:02:05 UTC from IEEE Xplore.  Restrictions apply. 



can refer to [10]. Then, the set composed of all labeled box 
particles is the following. 

1 1 1 1{ , ,[ ]}i i i N
k k k il w ′

− − − = =x  
, , , , , ,

1 1 1 1 1 1 1 1{ , ,[ ]} { , ,[ ]}p bN Nper i per i per i bir i bir i bir i
k k k i k k k il w l w− − − = − − − =x x    (3) 

Where ′ = +p bN N N  and it is the whole number of 
labeled box particles. The box particle labels set is as 
follows. 

, , 1 2
1 1 1 1 1 1 1 1{ } { } { , , , }′

− − = − = − − −= =p bN Nper i bir i N
k k i k i k k kL l l l l l     (4) 

4.3 Prediction 

All of the labeled box particles mentioned above are 
propagated by the motion equation. 

| 1 1 1[ ]=[ ]([ ]), 1, ,i i
k k k|k kf i N− − − ′=x x            (5) 

| 1 1 1([ ]) , 1, ,i i i
k k s k kw P w i N− − − ′= =x             (6) 

| 1 1, 1, ,i i
k k kl l i N− − ′= =                        (7) 

Where sP  is the survival probability. The predicted labels 

set is denoted by 1 2
| 1 | 1 | 1 | 1{ , , , }N
k k k k k k k kL l l l ′

− − − −= . 

4.4 Updating 

Supposing that the detection probability is dP . The clutter 
modeled by a Poisson distribution with parameter λ  
distributes uniformly in the monitoring area. At time k
the updated weight and labels are respectively calculated as 
follows. 

| 1

| 1| 1 | 1

/ 11

(1 ([ ]))

([ ] | [ ]) ([ ])
([ ])

k

i
d k k

i im i i
k k kk j k k d k k

k k jj

P

w wg P
λ

−

−− −

−=

− +

= ⋅z
z

x

x x

 
(8) 

| 1
| 1

| 1

[ ]([ ],[ ])
([ ] | [ ])

[ ]

i
cp k k ji

k j k k i
k k

h
g −

−
−

=
z

z
x

x
x

      (9) 

/ 1 ([ ]) ([ ])k k j jcλ λ− = +z z  

| 1 | 1 | 1
1

([ ] | [ ]) ([ ])
p bN N

i i i
k j k k d k k k k

i

g P w
+

− − −
=

z x x     (10) 

| 1, 1, ,i i
k k kl l i N− ′= =                   (11) 

Where | 1([ ] | [ ])i
k j k kg −z x  is a special likelihood function 

[10]. The function | 1[ ]([ ],[ ])i
cp k k jh − zx  returns a 

contracted version | 1[ ]i
k k−x  and it is contracted by the 

corresponding measurement [ ]jz . The contraction method 

[9] is the following: [ ] [ ] [ ]= zx x x , [ ] [ ] [ ]= zy y y . 

The updated labels set is denoted by 1 2{ , , , }N
k k k kL l l l ′= . 

4.5 Target number estimation and label processing 

The estimated number of the targets is ˆ
kN

1

ˆ int
N

i
k k

i

N w
′

=

= (12) 

In order to simplify label processing, it is assumed that the 
new birth and disappearance of the target does not occur at 
the same time. 

If 1
ˆ ˆ
k kN N −> , it indicates that there are the new born 

targets, and the number of the new born targets is 

1
ˆ ˆ

new k kN N N −= − . Search for the newN  box particles 
with the maximum weight in all labeled box particles which 
the label equals 0, and correct their labels as 
( ) ( )1 , ,max max newl l N+ + , where maxl  is the 
maximum label that has already appeared in all labeled box 
particles. 

If 1
ˆ ˆ
k kN N −= , it indicates that there are not the new born 

targets, the labels does not need to be changed. 

If 1
ˆ ˆ
k kN N −< , it indicates that partial targets have 

disappeared. According to the labels set kL , the weight sum 
of the box particles with the same labels is computed as the 
number estimation of a single target. If the value is less than 
the threshold χ , it implies that the target dies. And correct 
the corresponding box particle’s labels as 0. 
The processed labels set is denoted by 

1 2{ , , , }N
k k k kL l l l ′′ ′ ′ ′= . 

4.6 Target state estimation and track continuity 

Given the assumption that the box particles with the same 
labels are from the same target, the state and covariance of 
target j  are estimated in the following. 

( )
1

1ˆ
jN

j i i
k k k

j i

mid w
W =

= ⋅x x             (13) 

1

ˆ ˆ ˆ(( ([ )) ( ([ ]))
1 ] )

jN
j i i i T
k k j k j k

ij

w mid mid
W =

= − ⋅ −P x x x x

(14) 

( )i
kmid x  means finding the center of the box particle 

[ ]⋅ . jN  is the number of box particles with label j , 
i
kx  and i

kw  are respectively corresponding state and 

weight. jW  is normalized weight sum. 

1

jN
i

j k
i

W w
=

=                           (15) 
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Thus, we can get all ˆ
kN  target state estimation. 

Consequently, each target track is formed by connecting the 
target state estimation with the same labels. 

4.7 Resampling 

For the box particles with the same label j  and 0≠j , we 

randomly pick a dimension to divide them into boxN  
equally weighted box particles to obtain the box particles set 
corresponding to the target j . By this way, we can get 
resampled box particles set 

ˆ
1{ , 1/ ,[ ]} k boxN Ni i i

k k box k il w N ⋅
=′ = x . At the same time, in 

order to prevent the area degradation of the box particles, 
box particles after resampling need to be expanded 
appropriately. 

4.8 Group state estimation and track continuity 

The set of estimated target state at time k  is ˆ
kX . 

( ){ } ˆ

1

ˆ ˆˆ ,
kNj j

k k k
i=

=X x P                          (16) 

Based on the above estimation, we update group structure 
by using evolving networks model mentioned in Section 2. 
Then, the estimated target states set is divided into group 
state. 

1

ˆ ˆ
kG

g
k k

g=

=X X                                (17) 

Where kG  is the estimated group number and ˆ g
kX  is the 

estimated target state within group g . In addition, we use 
group state to correct individual target state in a group to 
constrain group evolution. 
Finally, we extend the label to group target. Each group g  

is added a label 1−
g
kT  at time 1−k . If there is a group g′  

at time k  that includes at least half of the targets from 
group g , then let 1

′
−=g g

k kT T , otherwise a new group label 

is assigned for ′g
kT . 

5 SIMULATION RESULTS 
In order to verify the performance of the proposed algorithm 
in this paper, we compare the performance of the LBP-PHD 
group targets tracking algorithm with BP-PHD group 
targets tracking algorithm in [8] with the same simulation 
scenario, and use the OSPA distance [11] to evaluate the 
tracking performance. 
In our experiment, the group targets contain 4 groups, and 
move in a 2-dimension plane with constant velocity (CV). 
Dynamic model for each target in the group is established as 
follows. 

1k k k−= +x Fx ω                            (18) 

1k k k−= +z Hx ν                              (19) 

1 0 0
0 1 0 0
0 0 1
0 0 0 1

T

T
=F

1 0 0 0
0 0 1 0

=H  

T2

2
0 0/ 2

00 / 2
TT

TT=  

Where kx  is the state vector for each target at time k , F  

is state transition matrix, H is measurement matrix, is 
the transition matrix of state noise kω , kν  is measurement 

noise. What’s more, the point measurement kz  needs to be 

converted into interval measurement [ ]kz  to process in 

this paper. 
The range of surveillance is 

[ ] [ ] 21000,1000 1000,1000 m− × − , the duration of the 

scenario is 50s , sampling interval is 1T s= , the cluttered 
points in average is 2=r , standard deviation of state noise 
is 0.02x y mσ σ= = , standard deviation of measurement 

noise is 3x y mσ σ= = . The probability of detection is 

d 1p = , and the surviving probability is s 0.99p = . The 

point measurement function is ( )kh x  at time k , so the 
interval measurement is defined as 
[ ] [ ( ) 0.5 , ( ) 0.5 ]k k k k kh h= + − + +z x v x vΔ Δ . 

Interval length is T[18,18]=Δ . 30 labeled box particles 
are used in the filtering process, and 4 labeled box particles 
are added to detect newborn targets. The OSPA distance 
parameters are 2, 200p c= = .  

The target true tracks are shown in Fig.2, different targets 
are represented by different colors in every group, and the 
starting position is denoted by the circles. 
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Fig.2 True tracks of group targets 

 
Four groups give birth and disappear at different time. The 
group 1 is new born at [ ]800,800−  at 1k s= , and dies at 

50k s= . The group 2 is new born at [ ]800, 700− −  at 

10k s= , and dies at 40k s= . The group 3 is new born at 
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[ ]200, 750− −  at 15k s= , and dies at 35k s= . The 

group 4 is new born at [ ]580,730  at 20k s= , and dies 

at 30k s= . In our tracking process, we assume that four 
groups are independent, the number of targets and groups 
are unknown. Target and group tracks estimation by the 
LBP-PHD and BP-PHD filter are shown in Fig.3-6, 
respectively.  

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

x/m

y/
m

 
Fig.3 Target tracks estimation by LBP-PHD filter 
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Fig.4 Target tracks estimation by BP-PHD filter 
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Fig.5 Group centroid tracks estimation by LBP-PHD filter 
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Fig.6 Group centroid tracks estimation by BP-PHD filter 

From Fig.3-6, we can see that LBP-PHD filter is able to 
distinguish different targets and groups. It can also obtain 
each target and group centroid track denoted by different 
symbol. That’s because a unique label is added to each 
target and group in LBP-PHD filter. However, BP-PHD 
filter can only get each target and group centroid state 
estimation. It is unable to distinguish different targets and 
groups. 
After 30 Monte Carlo simulations, the estimated number of 
targets and groups by two algorithms are respectively shown 
in Fig.7 and Fig.8, It can be seen that two algorithms can get 
the accurate target number estimation. Fig.9 and Fig.10 
show the OSPA distance for target and group centroid 
estimation. Because of the instability of k-means clustering, 
BP-PHD filter is far worse than LBP-PHD filter in the 
extraction of target state and group centroid state. It has a 
higher OSPA distance. 
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Fig.7 The estimated number of target 
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Fig.8 The estimated number of group 
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Fig.9 OSPA distance for target 
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Fig.10 OSPA distance for group centroid 

6 CONCLUSION 
Different from the traditional multi-target tracking, group 
targets consist of many targets with a coordinated and 
interacting pattern. However, the target track and the group 
structure have not been considered in most of the exiting 
algorithm. We propose a novel multiple group target 
tracking algorithm based on evolving networks model and 
LBP-PHD filter in this paper. LBP-PHD filter has ability to 
differentiate different tracks by adding different labels to 
different box particles. Meanwhile, using evolving networks 
model to update group structure, we can obtain each target 
track and group centroid tracks. Further, the estimated 
number of targets and groups can also be obtained. The 
simulation results show that the proposed algorithm has a 
better performance than BP-PHD group targets tracking 
algorithm. 
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