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Abstract—Precoding and Modulation techniques are widely
investigated to mitigate interference in the space, time, and
frequency domains, respectively. However, next-generation (xG)
channels are increasingly dense and mobile, making these do-
mains highly correlated and resulting in high-dimensional chan-
nel tensors. Separate interference cancellation methods treating
the channel as independent 2-D matrices fail to cancel the
joint interference across multiple Degrees of Freedom (DoF).
High Order Generalized Mercer’s Theorem (HOGMT) based
precoding and Multidimensional Eigenwave Multiplexing (MEM)
modulation have been proposed to cancel the joint interference
by leveraging the jointly orthogonal eigencomponents of the
channel. However, these methods rely heavily on perfect Channel
State Information (CSI), and their performance degrades with
imperfect CSI. In this paper, we propose a joint interference
cancellation method based on the Convolutional Neural Network
(CNN) with a single linear kernel (JIC-CLK). We show that a
CNN with a single linear kernel is equivalent to a wireless system,
where the linear kernel itself is identical to the transmitted signal
with the CSI as input. By training the output to approach the
desired signal at the receiver with MSE loss, the kernel converges
to the optimal transmitted signal in the MMSE sense. The
proposed method adapts to both perfect and imperfect CSI and
can be extended to high-dimensional channels. The accuracy and
generality of the proposed method are validated by simulations
in three cases: 1) Perfect CSI, 2) Imperfect CSI, and 3) 4-D
spatio-temporal channels with imperfect CSI.

Keywords—Convolutional Neural Network, Interference Can-
cellation, Imperfect CSI, Multi-dimensional Channels.

I. INTRODUCTION

In general, precoding is employed for spatial interference

cancellation in MU-MIMO channels. It requires CSI to capture

the mutual effects among users and then design the precoding

matrix to cancel Inter-User Interference (IUI). Conventional

linear precoding methods include Maximum Ratio Trans-

mission (MRT), Zero-Forcing (ZF), and MMSE Precoding.

MRT maximizes the signal power at the intended user and is

suitable for systems where inter-user interference is negligible

compared to noise [1]. ZF precoding nullifies IUI as well as

the channel gain, performing well in scenarios where noise is

weak compared to interference [2]. MMSE achieves a balance

by maximizing a ratio between the signal gain at the intended

user and the interference plus noise [3]. Nonlinear precoding

stems from Dirty Paper Coding (DPC), which is capacity-

achieving for downlink MIMO channels [4]–[6]. However,

its impractical complexity limits the application in reality.

Alternatively, Tomlinson-Harashima Precoding (THP) offers a

suboptimal solution with less complexity [7]. The performance

Table I: Conventional Precoding and Modulation methods

Waveform Design Precoding Modulation

Methods MMSE DPC THP OFDM OTFS

Linearity Linear Nonlinear Linear

CSI Requirement Yes No

Cancellation Types IUI ISI ISI-ICI

Error Source Imperfect CSI ICI IDI

of precoding techniques is affected by the accuracy of CSI and

nonlinear precoding methods are generally more sensitive to

CSI errors than linear precoding methods [8].

Modulation techniques are widely investigated for interfer-

ence cancellation in the time, frequency, and delay-Doppler

domains by designing orthogonal data carriers. Orthogonal

Frequency-Division Multiplexing (OFDM) modulation trans-

mits symbols in the frequency domain to avoid interference

in the time domain, known as Inter-Symbol Interference (ISI).

However, when the channel experiences Doppler shift, OFDM

suffers from interference in the frequency domain, known as

Inter-Carrier Interference (ICI). Orthogonal Time-Frequency

Space (OTFS) modulation [9] has been proposed to avoid

both ISI and ICI by designing orthogonal data carriers in the

delay-Doppler domain. However, in rapidly time-varying chan-

nels, there exists interference in the delay-Doppler domain,

called Inter-Doppler Interference (IDI), which prevents OTFS

symbols from maintaining orthogonality. Meanwhile, Fourier

Transform (FT) based methods only design data carriers in

the time, frequency, and delay-Doppler domains, which are

unable to find jointly orthogonal bases when incorporating the

space domain. Table I summarizes the conventional precoding

and modulation methods. The waveform design based on

these modulation and precoding methods treats interference

separately, thereby failing to mitigate joint interference.

A joint spatio-temporal precoding method based on

HOGMT [10] has been proposed to cancel joint interference in

the spatio-temporal domain by projecting the transmitted sig-

nal onto the eigenspace of the spatio-temporal channels. Mean-

while, Multi-dimensional Eigenwave Multiplexing (MEM)

modulation has been proven to cancel interference across

all DoF with perfect CSI by decomposing high-dimensional

channels into eigenwaves and using those as data carriers [11].

However, since both methods require eigen decomposition

of the channel, their performance degrades with CSI errors,

which is common in real-world scenarios. This motivates us

to propose a joint interference cancellation method robust to

the imperfect CSI. In this paper, we show that the convolution



operation of the CNN is equivalent to the wireless system. For

a CNN with a single linear kernel, the kernel itself is exactly

the same as the transmitted signal. Therefore, the objective

of CNN training in our method is to obtain a desired kernel

for one-time transmission rather than a general model. The

contributions of this paper are summarized as follows:

• We show the equivalence between CNN and the wireless

system, revealing that, with the CSI and the desired signal

as inputs, the single linear kennel of CNN converges to

the optimal transmitted signal in MMSE.

• The proposed method cancels spatial interference while

avoiding post-coding steps, thereby reducing the compu-

tational burden at the receiver.

• The proposed method is adaptive to both perfect and

imperfect CSI cases and can be extended to high-

dimensional channels for joint interference cancellation.

• We validate the accuracy and generality of the proposed

method by extensive simulations in three cases: 1) Spatial

channels with the perfect CSI, 2) Spatial channels with

the imperfect CSI and 3) Spatio-temporal channels with

imperfect CSI. The comparison with SoTA is provided.

II. PRELIMINARIES

A. Channel Representations and Domain Transformations

In Linear Time-Variant (LTV) channels, the transmitted

signal s(t) is impacted by the underlying physics of the

channel, described by path delays and Doppler shift to produce

the received signal r(t) [12] as,

r(t) =
∑P

p=1
hps(t− τp)e

j2πνpt (1)

where hp, τp and νp are the path attenuation factor, time delay

and Doppler shift for path p, respectively. We omit the noise

term for simplicity. Then (1) is expressed in terms of the

overall delay τ and Doppler shift ν as

r(t) =

∫∫

SH(ν, τ)s(t−τ)ej2πνt dτ dν (2)

=

∫

h(t, τ)s(t−τ) dτ (3)

where SH(ν, τ) is the (Doppler-delay) spreading function and

h(t, τ) is the time-varying impulse response, which describes

the channel gains for all paths in the Doppler-delay domain

and the time-delay domain, respectively. The time-frequency

and frequency-Doppler representation can be obtained by

LH(t, f)=

∫∫

SH(ν, τ)ej2π(tν−fτ) dτ dν (4)

b(f, ν) =

∫∫

h(t, τ)ej2π(−tν−fτ) dt dτ (5)

where LH(t, f) and b(f, ν) are the TF transfer function and

spectrum transfer function, respectively.

Since all the channels can be transformed to the time-delay

domain, we use h(t, τ) to characterize the interference in the

LTV channels without considering the space domain.

Interpretation: For Linear Time-Invariant (LTI) channels,

h(t, τ) and SH(ν, τ) collapse to h(τ); b(f, ν) and LH(t, f)
collapses to H(f). OFDM with cyclic prefix achieves close-

optimal performance since there is no Doppler shift (ICI-free).

B. Joint Spatio-Temporal Precoding: HOGMT Precoding

For the spatio-temporal (time-varying MIMO) channels,

h(t, τ) is extended to incorporate multiple users. For sim-

plicity, we consider the single-antenna user case. Denotes

hu,u′(t, τ) [13] as the time-varying impulse response between

the u′-th transmit antenna and the u-th user. The 4-D channel

tensor is expressed by

H(t, τ) =







h1,1(t, τ) · · · h1,u′(t, τ)
...

. . .

hu,1(t, τ) hu,u′(t, τ)






(6)

HOGMT precoding [8] cancels the spatial, temporal and

joint spatio-temporal interference existing in H(t, τ). Let

ku,u′(t, t′)=hu,u′(t, t−t′) be the 4-D channel kernel [12],

[14], (3) is rewritten as the spatio-temporal case

r(u, t) =

∫∫

k(u, t;u′, t′)s(u′, t′) du′ dt′ (7)

By HOGMT, the 4-D channel kernel k(u, t;u′, t′) is decom-

posed into eigen components as follows,

k(u, t;u′, t′) =
∑N

n=1
σnψn(u, t)φn(u

′, t′) (8)

with orthonormal properties as

⟨ψn(u,t),ψ
∗

n′(u,t)⟩ = δnn′

⟨φn(u,t),φ
∗

n′(u,t)⟩ = δnn′

(9)

The two decomposed eigenfunction sets show duality as
∫

k(u, t;u′, t′)φ∗n(u
′, t′) du′ dt′ = σnψn(u, t) (10)

The eigenfunctions with the above duality is known as dual

eigenfunctions. (10) shows that transmitting a eigenfunction

through the channel, its dual will be received at the receiver.

Then the precoded signal x(u, t) based on HOGMT is derived

by combining the jointly orthogonal eigenfunctions with the

desired coefficients xn as,

x(u,t)=

N
∑

n=1

xnφ
∗

n(u,t) where, xn=
⟨s(u,t),ψn(u,t)⟩

σn
(11)

Interpretation: Since HOGMT precoding projects the entire

signal onto the eigenspace spanned by eigenfunctions {φn}
and {ψn}, its accuracy is influenced by two main aspects: 1)

the number of eigenfunctions, which affects the completeness

of the signal projection, and 2) the accuracy of the CSI, which

affects the correctness of the decomposed eigenfunctions.

C. Multi-dimensional Modulation: MEM Modulation

MEM [11] employs eigenfunctions (also known as eigen-

waves) as data carriers, multiplexing the data symbols {sn}



and eigenfunctions {φn} as,

x(u, t)=

N
∑

n=1

snφ
∗

n(u, t) (12)

Transmitting x(u, t) over the channel, the data carrier φn
is converted to its dual ψn scaled by subchannel gains σn
according to (10). Therefore, the received signal is given by

r(u, t)=

N
∑

n=1

σnsnψn(u, t) + v(u, t) (13)

where v(u, t) is the AWGN. Since eigenfunctions are or-

thogonal, the estimate symbol {ŝn} can be obtained by the

demultiplexing using the conjugate of {ψn} at the receiver as,

ŝn=

∫∫

r(u, t)ψ∗

n(u, t) du dt=σnsn + vn (14)

Interpretation: Unlike HOGMT precoding projecting the en-

tire signal onto eigenfunctions, MEM transmits each symbol

independently. Therefore, the number of eigenfunctions does

not affect the accuracy but does affect the throughput. How-

ever, since it involves a demultiplexing step, i.e., matched

filtering using eigenfunctions at the receiver, CSI is required

at both the transmitter (CSIT) and the receiver (CSIR). Incon-

sistency between them will lead to demultiplexing errors.

III. LEARNING TO CANCEL JOINT INTERFERENCE

By the nature of wireless systems, the received signal is

obtained by the convolution of the channel gains and the trans-

mitted signal as shown in (3). Considering the work principle

of the CNN is also based on convolution, it is promising to find

a mapping between them. From a system view, the input, CNN

kernel and the output correspond to the transmitted signal,

the channel and the received signal, respectively. However,

this mapping is meaningless as our objective is to optimize

the transmitted signal. Noticing the interchangeability of the

convolution variables, the input can serve as the channel while

the CNN kernel acts as the transmitted signal. Meanwhile,

since the signal is linear and there is no “multiple layers” of

signals in reality, the CNN kernel must be one linear layer.

Thus the interference cancellation is solved by Theorem 1.

Theorem 1. (JIC-CLK) Given imperfect CSI H̃=H+∆H,

where ∆H ∼ N (0, σ∆H) and modulated symbols s, CNN with

a single linear kernel w minimizes the loss function in (15)

L=
1

B

B
∑

b=1

||w(H̃b)−s||2

s.t. ||w||2 ≤ P

(15)

such that employing the kernel w as the transmitted signal

minimizes the interference in MMSE sense. Where w(·) is the

kernel operation. H̃b is one batch imperfect CSI and B is the

batch size. P is the power constraint.

Proof. Transmitting a signal x through the channel H̃, the

interference is expressed by H̃x− s. Then the optimal trans-

mitted signal w with respect to interference cancellation in

Imperfect CSI 

MSE Loss

Desired SignalCNN Kernel Output

Channel

Tx signal Rx signal

CNN training domain

MMSE

Transmission domain

Desired Signal

Figure 1: The connection between the training domain and the

transmission domain for a 3x3 signal example.

MMSE is obtained by solving

argmin
x

E
{

||H̃x− s||2
}

s.t. ||x||2 ≤ P
(16)

For CNN with one linear kernel, we have w(H) = Hw.

Comparing (15) and (16), we observe that the kernel w

is equivalent to the transmitted signal x. Therefore, CNN

minimizing L enables w converging to the optimal x with

respect to minimal interference in MMSE.

Extension to high-dimensional channels: In the spatio-

temporal channels, the imperfect CSI is represented by a 4-D

tensor with added errors, H̃(t, τ) = H(t, τ)+∆H(t, τ), where

the entry is denoted as h̃u,u′(t, τ), with u and u′ as indices of

antennas at the receiver and the transmitter, respectively. Let

k̃u,t(u
′, t′)=h̃u,u′(t, t− t′), L is rewritten as

L=
1

B

B
∑

b=1

||⟨k̃u,t(u
′, t′), w(u′, t′)⟩−s(u, t)||2 (17)

where ⟨a, b⟩ is the inner product of a and b. w(u′, t′) and

s(u, t) are 2-D forms of w and s in (15), respectively, which

are spatio-temporal signals in the transmission domain.

Figure 1 shows the high-level view of JIC-CLK, where the

inputs are the imperfect CSI and the desired signal. The linear

CNN kernel is trained to minimize the MSE loss between the

output and the desired signal, where the output is the received

signal in the transmission domain. Therefore, transmitting the

linear kernel over the channel renders the received signal to

approach the desired signal in MMSE sense.

Remark 1. Since the received signal directly converges to

the desired signal in MMSE, JIC-CLK eliminates the need for

post-coding steps, thereby reducing the computational burden

at the receiver. This is a crucial advantage for practical

applications, especially for hardware-limited user equipment

such as mobile phones and vehicular communication systems.

Remark 2. In general, conventional CNN methods are mod-

eled as black boxes, where the kernels consist of multiple
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Figure 2: Performance of THP, DPC, MMSE precoding and JIC-CLK for Case-1
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Figure 3: Performance of THP, DPC, MMSE precoding and JIC-CLK at σ∆H = 0.2 for Case-2
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Figure 4: BER of THP, DPC, MMSE precoding and JIC-CLK over σ∆H for Case-2

layers with nonlinear activation functions. Employing this

type of CNN to optimize the transmitted signal, where the

transmitted signal can only be the output of the CNN, cannot

ensure convergence due to the following reasons: 1) the black

box kernel lacks explainability, and 2) since both the CSI and

data symbols are randomly generated, the trained model with a

fixed kernel struggles to generalize to this double randomness.

IV. RESULTS

A. Case-1: Spatial Channels with Perfect CSI

In the training phase, we generate 1000 random channels

H ∈ C
16×16 with standard Gaussian distribution and data

symbols s ∈ C
16×1 pairs. For each pair, we conduct model

training over 50 epochs, with each epoch consisting of 2000

identical samples (perfect CSI). The bandwidth is 20 MHz.

During the testing phase, we obtain the transmitted signal

x ∈ C
16×1, which is the kernel, from the trained model and

transmit it through the channel H under an AWGN environ-

ment with varying Signal-to-Noise Ratio (SNR) conditions,

ranging from 0 dB to 20 dB. The received signal r ∈ C
16×1

is obtained by r = Hx+v. We then compare the demodulated

r and s to compute the Bit Error Rate (BER).

Figure 2a shows the training and validation loss, both of

which converge within 50 epochs. Figure 2b compares the

BER of THP, DPC, MMSE precoding and JIC-CLK with the

QPSK scheme. JIC-CLK performs worse than DPC, which is

reasonable since DPC is a capacity-achieving method with the

perfect CSI. THP shows the highest BER as it is not suitable

for large MIMO channels. JIC-CLK outperforms both MMSE

and THP, achieving near-ideal BER from 0 dB SNR to around

5 dB SNR. Figure 2c shows that JIC-CLK achieves a similar

throughput to DPC, and both outperform MMSE form 0 dB

SNR to 10 dB SNR. THP has the lowest throughput. Figure 2d

shows the BER of JIC-CLK with QPSK, 16QAM, 64QAM

and 128QAM, where a higher-order QAM leads to a higher

BER since more bits are modulated in one QAM symbol.

B. Case-2: Spatial Channels with Imperfect CSI

With imperfect CSI, each sample is added an random error

as H̃ = H + ∆H with ∆H ∼ N (0, σ2
∆H), where σ∆H

represents the known CSI error variation. In this case, we set

σ∆H from 0.01 to 0.2 with 0.01 steps. Other settings remain

same as Case-1. Figure 3a shows the traning and validation
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Figure 5: Channel profile and statistics in the time and space domain of Case-3

Table II: Parameters of the channel in Case-3

Parameter Value

Channel model 3GPP 38.901 UMa NLOS [15]

Array type BS: 3GPP 3-D [16]; UE: Vehicular [17]

BS antenna Height hb = 10 m; Number Nu′ = 10

UE antenna Height hu = 1.5 m; User Number Nu = 10

UE speed v ∈ [100, 150] km/h

Bandwidth Bw = 20 MHz; Center frequency: fc = 5 GHz

Channel size Each segments: H(t, τ) ∈ C10×10×64×64

loss for σ∆H = 0.05, 0.1, 0.15 and 0.2, respectively, where

larger σ∆H leads to slower convergence. Figure 3b compares

the BER at σ∆H = 0.2. While DPC is optimal with perfect

CSI, it is highly sensitive to CSI errors. MMSE precoding

achieves a similar BER to JIC-CLK from 0 dB SNR to

10 dB SNR but degrades after 10 dB SNR. As the MMSE

precoding matrix is WMMSE = H
H(HH

H + I/SNR)−1,

the influence of the regularization term I/SNR diminishes as

SNR increases, causing it to degrade to ZF precoding. This

makes MMSE precoding more sensitive to CSI errors at high

SNR levels. In this case, JIC-CLK achieves the lowest BER.

The corresponding throughput is shown in Figure 3c, where

TPC performs the worst before 13 dB SNR but better than

DPC thereafter. JIC-CLK outperforms the other three methods.

Figure 3d compares the BER of JIC-CLK with varying QAM

schemes at σ∆H = 0.2, where All QAM schemes except

QPSK perform poorly, with BER larger than 10−1.

Figure 4a-4d show the change in BER over σ∆H for the

four methods. Overall, THP has the highest BER, while DPC

is the most sensitive to CSI errors. MMSE precoding shows

some robustness in the low SNR region due to the regulazation

term in the precoding matrix. As SNR increases, it becomes

more sensitive to CSI errors despite experiencing less noise.

In contrast, the robustness of JIC-CLK is not affected by SNR,

which achieves the best performance with imperfect CSI.

C. Case-3: Spatio-temporal Channels with Imperfect CSI

The spatio-temporal channel is generated using 3GPP

38.901 UMa NLOS senario built on QuaDriga in Matlab.

The channel parameters and the layout of the base station

(BS) and the user equipment (UE) are shown in Table II. As

THP, DPC and MMSE precoding are unavailable for spatio-

temporal channels, we compare our method with HOGMT

precoding and MEM modulation in Case-3. As discussed in
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Figure 6: BER of HOGMT precoding, MEM modulation and

JIC-CLK at β = 0 and β = 0.2, respectively.

the Section II, the number of eigenfunctions N have different

effects on HOGMT precoding and MEM modulation. For

a fair comparison, we choose the top 98% eigenfunctions

for both methods. Since H(t, τ) is not standard Gaussian

distributed in Case-3, we set σ∆H = β ·Var(H(t, τ)), where β
is from 0 to 0.2 with 0.01 steps. It represents the relative CSI

error variation. The number of samples is 18000. Figure 5a

and 5b show the power delay profile and autocorrelation func-

tion (ACF) for the first user, respectively. A drift is observed

due to the mobility of the user, leading to the time-varying

distribution in overview. Correlation Matrix Distance (CMD)

is a measure of the stationary interval in the space domain [18].

Figure 5c and 5d show the CMD at the transmitter and the

receiver, respectively, where they are presented over time

instead of distance because the varying mobility profiles of

multiple users lead to different distances over time.

Figure 6a compares the BER of HOMGT precoding, MEM

modulation and JIC-CLK at β = 0, i.e., with perfect CSI.

MEM modulation and JIC-CLK achieve a similar BER, both

outperforming HOMGT precoding by around 1 order of

magnitude at 10 dB SNR. They can achieve a similar BER

as HOMGT precoding by using 2 dB less SNR. Figure 6b

shows the BER of three methods at β = 0.2, where JIC-

CLK achieves a significantly lower BER than both HOGMT

precoding and MEM modulation. Figure 7a-7c show the

change of BER over β for three methods. There is a significant

performance gap for HOGMT precoding between perfect CSI

and imperfect CSI. As discussed in the “interpretation” in

Section II-B, HOMGT precoding projects the entire signal

onto the eigenfunctions. Consequently, any error in an eigen-

function will affect the reconstruction of the entire signal. In
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Figure 7: BER of HOGMT precoding, MEM modulation and JIC-CLK over β for Case-3

contrast, MEM modulation transmits symbols independently

over each eigenfunction. Therefore, an error in an eigen-

function will only affect the symbol corresponding to that

eigenfunction. MEM modulation shows a certain robustness at

the low CSI error region, but degrades rapidly when β > 0.05,

while JIC-CLK shows a slow and smooth degradation of BER

over the entire CSI error region without abrupt jumps and

significant fluctuations. This indicates a more predictable and

consistent performance decline, showing that JIC-CLK is more

robust to CSI errors compared to the other two methods.

V. DISCUSSION

Although the complexity is not the focus of this paper, it

is important to note that employing the CNN kernel as the

transmitted signal requires retraining for each transmission,

while each transmission can include multiple data frames.

Since JIC-CLK involves only one linear CNN kernel, the

complexity remains practical, particularly in scenarios where

the CSI error is large and the robustness is critical, such as

underwater and High-speed train and V2X channels.

VI. CONCLUSION

In this paper, we proposed a joint interference cancellation

method by leveraging the equivalence between the wireless

system and a CNN with a single linear kernel. By transmitting

the CNN kernel through the channel, the received signal

approaches the desired signal in the MMSE sense without

requiring post-coding steps. We demonstrate that for spatial

channels with perfect CSI, JIC-CLK achieves near-ideal BER

from 0 dB SNR to around 5 dB and outperforms both THP

and MMSE precoding. With imperfect CSI, it surpasses THP,

DPC, and MMSE precoding. For spatio-temporal channels

with imperfect CSI, it is more robust than both HOGMT

precoding and MEM modulation.
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