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Abstract—While interference in time domain (caused by path
difference) is mitigated by OFDM modulation, interference in
frequency domain (due to velocity difference), can be mitigated
by OTFS modulation. However, in non-stationary channels,
the relative difference in acceleration will cause Inter-Doppler
Interference (IDI) and a modulation method for mitigating IDI
does not exist in the literature. Both methods in the literature use
carriers in a specific domain which achieve orthogonality in the
target domain to mitigate interference. Moreover, those modu-
lation cannot directly incorporate space domain, which requires
additional precoding technique to mitigate inter-user interference
(IUI) for MU-MIMO channels. This work presents a generalized
modulation for any multidimensional channel. Recently, Higher
Order Mercer’s Theorem (HOGMT) [1] has been proposed to
decompose multi-user non-stationary channels into independent
fading subchannels (Eigenwaves). Based on HOGMT decom-
position, we develop Multidimensional Eigenwaves Multiplexing
(MEM) modulation which uses jointly orthogonal eigenwaves,
decomposed from the multidimensional channel as subcarri-
ers. Data symbols modulated by these eigenwaves can achieve
orthogonality across each degree of freedom(e.g., space (user-
s/antennas), time-frequency and delay-Doppler). Consequently,
the transmitted remain independent over the high dimensional
channel, thereby avoiding interference from other symbols.

I. INTRODUCTION

Path delays cause the Inter-Symbol Interference (ISI), which
can be mitigated by OFDM as it transmits symbols in
frequency domain [2]. On the other hand, Doppler effect
causes Inter-Carrier Interference (ICI), which can be mitigated
by OTFS modulation by transmitting symbols in the delay-
Doppler domain [3], [4]. However, in non-stationary channels,
both the delay and the Doppler effects changes over time and
frequency, which leads to interference at the delay-Doppler
domain, which is also referred as Inter-Doppler Interference
(IDI) [5]. Detectors have been investigated to mitigate IDI
for OTFS symbols [5], [6]. However, these additional tech-
niques can not ensure interference-free at the delay-Doppler
domain, especially for highly non-stationary channels. Those
techniques are iteratively developed to mitigate ISI, ICI and
then IDI due to path difference ∆x, velocity difference ∆x′

and then acceleration difference ∆x′′, by investigating orthog-
onality at time, time-frequency, and delay-Doppler domain,
respectively. In general, modulation techniques design carriers
in the domain represented by high order physics as it is rel-
atively less variant with minimal interference. This motivates
us to investigate a general modulation for high dimensional
channels. Moreover, the above modulations can not directly

Table I: Comparison between OTFS and MEM

Modulations OTFS MEM
Mathematical tool SFT HOGMT
Carriers domain Delay-Doppler domain Eigen domain
CSI requirement CSI at Rx CSI at TX and Rx

Adaptive to NS channels No Yes
General to HD channels No Yes

incorporate space domain, therefore requiring additional pre-
coding techniques to cancel spatial interference for MU-
MIMO channels [7], [8]. In this paper, we present a general
high dimensional modulation for non-stationary channels1.
Recently, HOGMT has been proposed as a mathematical tool
for multi-user non-stationary channel decomposition [1]. It can
decompose the high-dimensional channels into independent
subchannels along each degree of freedom (DoF). We leverage
this tool to develop Multidimensional Eigenwave Multiplex-
ing (MEM) modulation which uses the jointly orthogonal
eigenwaves decomposed from the high dimensional channel
as carriers. Symbols on these carriers achieve orthogonality
across each DoF and thus avoid interference from all DoF.

We summarize the qualitative differences between OTFS
and MEM in Table I. OTFS obtains the carriers by Symplectic
Fourier Transform (SFT), while MEM obtains its carriers by
HOGMT. The OTFS carriers are in the delay-Doppler domain,
while carriers of MEM are at the eigen domain. Further, OTFS
requires CSI at the receiver side only, while MEM requires
CSI at both transmitter and receiver side. This is the main
cost of MEM, although the CSI is generally required at the
transmitter in modern wireless systems that is well docu-
mented in the literature [9]. The OTFS input-output relation
and the corresponding modulation schemes for non-stationary
channels does not exist currently and it cannot directly gener-
alize to higher dimensional channels. For instance, it requires
additional precoding for MU-MIMO channels as it does not
achieve spatial orthogonality. The details about the limitations
of OTFS are discussed in Section III. The proposed MEM
is able to achieve orthogonality for non-stationary channels
and generalize to higher dimension, meaning it doesn’t require
additional detector and precoding to cancel IDI and IUI.

The contribution of this paper is summarized as follows:

• We deduce the input-output relation for non-stationary
1Any channel can be generated as a special case of the non-stationary

channel. Therefore the proposed modulation for non-stationary channels will
certainly generalize to any and all wireless channels.



channels, which shows the variation across time-
frequency and delay-Doppler domain.

• We design a multidimensional modulation with jointly
orthogonal eigenwaves as subcarriers, cancelling interfer-
ence in all degrees of freedom in non-stationary channels.

• We show the generality of MEM to higher dimensional
channels and validate it by extending the channel to space
domain (e.g., MU-MIMO channels) where MEM can also
cancel spatial interference without additional precoding.

• We validate MEM under three channels, two of which
shows the performance in non-stationary channels with
different non-stationarity intervals. The third shows it’s
generality by incorporating the spatial domain.

II. BACKGROUND

A. Non-stationary wireless channel model

The wireless channel is typically expressed by a linear op-
erator H , and the received signal r(t) is given by r(t)=Hs(t),
where s(t) is the transmitted signal. The physics of the impact
of H on s(t) is described using the delays and Doppler shift
in the multipath propagation [10] given by (1),

r(t) =
∑P

p=1
hps(t− τp)e

j2πνpt (1)

where hp, τp and νp are the path attenuation factor, time delay
and Doppler shift for path p, respectively. (1) is expressed in
terms of the overall delay τ and Doppler shift ν [10] in (2),

r(t) =

∫∫
SH(τ, ν)s(t−τ)ej2πνt dτ dν (2)

=

∫
LH(t, f)S(f)ej2πtf df =

∫
h(t, τ)s(t−τ) dτ (3)

where SH(τ, ν) is the (delay-Doppler) spreading function of
channel H , which describes the combined attenuation factor
for all paths in the delay-Doppler domain. S(f) is the Fourier
transform of s(t) and the time-frequency (TF) domain repre-
sentation of H is characterized by its TF transfer function,
LH(t, f) which can be obtained by 2-D Fourier transform
as (4). The time-varying impulse response h(t, τ) is obtained
as the Inverse Fourier transform of SH(τ, ν) from the Doppler
domain to the time domain as in (5).

LH(t, f)=

∫∫
SH(τ, ν)ej2π(tν−fτ) dτ dν (4)

h(t, τ)=

∫
SH(τ, ν)ej2πtν dν (5)

Figure 1 shows a general Linear Time Varying (LTV) channel
model, represented in different domains and illustrates the
mutual relationship between h(t, τ), LH(t, f) and SH(τ, ν).

B. Statistics of non-stationary channels

For stationary channels, the TF transfer function is a station-
ary process and and the spreading function is a white process
(uncorrelated scattering) which are related as,

E{LH(t, f)L∗
H(t′, f ′)}=RH(t−t′, f−f ′) (6)

Figure 1: General LTV model transition in 4-D domain (time,
frequency, delay and Doppler) [10], [11], [12].

E{SH(τ, ν)S∗
H(τ ′, ν′)}=CH(τ, ν)δ(τ−τ ′)δ(ν−ν′) (7)

where δ(·) is the Dirac delta function. CH(τ, ν) and RH(t−
t′, f−f ′) are the scattering function and TF correlation func-
tion, respectively, which are related via 2-D Fourier transform,

CH(τ, ν) =

∫∫
RH(∆t,∆f)e−j2π(ν∆t−τ∆f) d∆t d∆f (8)

In contrast, for non-stationary channels, the TF transfer func-
tion is a non-stationary process and the spreading function
is a non-white process. Therefore, a local scattering function
(LSF) CH(t, f ; τ, ν) [11] is defined to extend CH(τ, ν) to non-
stationary channels in (9). Similarly, the channel correlation
function (CCF) R(∆t,∆f ; ∆τ,∆ν) generalizes RH(∆t,∆f)
to the non-stationary case in (10).

CH(t, f ; τ, ν)

=

∫∫
RL(t, f ; ∆t,∆f)e

−j2π(ν∆t−τ∆f) d∆t d∆f

=

∫∫
RS(τ, ν; ∆τ,∆ν)e

−j2π(t∆ν−f∆τ) d∆τ d∆ν

(9)

R(∆t,∆f ; ∆τ,∆ν)

=

∫∫
RL(t, f ; ∆t,∆f)e

−j2π(∆νt−∆τf) dt df

=

∫∫
RS(τ, ν; ∆τ,∆ν)e

−j2π(∆tν−∆fτ) dτ dν

(10)

where, RL(t, f ; ∆t,∆f) = E{LH(t, f+∆f)L∗
H(t−∆t, f)}

and RS(τ, ν; ∆τ,∆ν) = E{SH(τ, ν+∆ν)S∗
H(τ−∆τ, ν)}.

For stationary channels, CCF reduces to TF correlation func-
tion R(∆t,∆f ; ∆τ,∆ν)=RH(∆t,∆f)δ(∆t)δ(∆f).

III. LIMITATIONS OF OTFS

OTFS input-output relation: The OTFS delay-Doppler input-
output relation [4] can be rewritten in continuous form as,

r(t, f) =

∫∫
hw(τ, ν)s(t− τ, f − ν) dτ dν + v(t, f) (11)

where v(τ, ν) is noise, and hw(τ, ν) is the twisted convolution
of delay-Doppler response, hc(τ, ν) with window function
w(τ, ν) (Heisenberg transform) as in (12),

hw(τ, ν)=

∫∫
e−j2πν′τ ′

hc (τ
′, ν′)w (ν−ν′, τ−τ ′) dτ ′dν′

(12)



and relation of spreading function SH(τ, ν) and delay-Doppler
response hc(τ, ν), as given in [12] is,

SH(τ, ν) = e−j2πν′
hc(τ, ν) (13)

Then (12) is rewritten as

hw(τ, ν) =

∫∫
SH(τ ′, ν′)w (ν − ν′, τ − τ ′) dτ ′dν′ (14)

Notice hw(τ, ν) is the flipped correlation of spreading function
and a window function, i.e., hw(τ, ν) = E{SH(τ ′, ν′)w(ν −
ν′, τ − τ ′)}, which is the correlation for stationary channels.
Currently, the model of OTFS input-output relation for non-
stationary channels is not available in the literature.

Limitations of OTFS in non-stationary channels: For non-
stationary channels, we have E{SH(τ ′, ν′)w(ν−ν′, τ−τ ′)} =
hw(τ

′, ν′; τ, ν). Then hw(τ, ν) can be extended to time- and
frequency-varying case to hw(t, f ; τ, ν) as,

hw(t, f ; τ, ν) ≜ F2{E{SH(τ ′, ν′)w(ν − ν′, τ − τ ′)}}

=

∫∫
hw(τ

′, ν′; τ, ν)× ej2π(tν
′−fτ ′) dτ ′ dν′ (15)

where F2 is the Symplectic Fourier Transform (SFT), i.e., 2-D
Fourier Transform. Therefore OTFS input-output relation (11)
for non-stationary channel is reformulated as,

r(t, f)=

∫∫
hw(t, f ; τ, ν)s(t−τ, f−ν) dτ dν+v(t, f) (16)

Note that (16) has a similar form as (11) but shows
the time and frequency variation of the impulse response
function hw(τ, ν). Therefore we call hw(t, f ; τ, ν) as local
delay-Doppler response (LDR) as defined by (15). The above
deduction shows that OTFS modulation cannot be applied
directly to non-stationary channels as it cannot deal with the
LDR, which leads to interference in the delay-Doppler domain.
Currently, the OTFS modulation for non-stationary channels
is not available in the literature.

Limitations of OTFS in higher dimensional channels:
Consider the deduced OTFS input-output relation for non-
stationary channels in (16). Let k(t, f ; t′, f ′) ≜ hw(t, f ; t −
t′, f − f ′) be the channel kernel, then (16) is rewritten as,

r(t, f) =

∫∫
k(t, f ; t′, f ′)s(t′, f ′) dt′ df ′ + v(t, f) (17)

For MU-MIMO non-stationary channels, hw(t, f ; τ, ν) is
extended to H(t, f ; τ, ν). For notational convenience, we use u
and u′ to represent a continuous space domain (users/antennas)
at the receiver and transmitter, respectively. Then H(t, f ; τ, ν)
is henceforth rewritten as hw(u, t, f ;u′, τ, ν) and thus (17) can
also be extended to MU-MIMO case as in (18),

r(u, t, f) =

∫∫∫
k(u, t, f ;u′, t′, f ′)s(u′, t′, f ′) du′ dt′ df ′

+ v(u, t, f) (18)

where k(u, t, f ;u′, t′, f ′) ≜ hw(u, t, f ;u
′, t − t′, f − f ′)

denotes the space-time-frequency transfer function. The OTFS
symbol is not able to achieve joint orthogonality at space-time-
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Non-stationary channel
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Non-stationary 
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Figure 2: OTFS channel model evolution

frequency domain thereby leading to not only the spatial inter-
ference but also the joint space-time-frequency interference.

In conclusion, OTFS modulation has the limitations: 1)
OTFS cannot deal with non-stationary channels where the
delay-Doppler response is time- and frequency-varying. 2)
OTFS require additional equalizer for MU-MIMO channels.
Moreover, the equalizer and OTFS can only achieve the
optimal interference cancellation at space and time-frequency
domain respectively, as modulation and equalizers are indepen-
dent processes. It is not able to achieve the global optimization
for the joint space-time-frequency interference cancellation.
Figure 2 shows the limitation of OTFS as the channel exhibits
non-stationarity and is extended to higher dimension (space
domain), where the models of OTFS are not available.

IV. EIGENWAVE MODULATION

A. HOGMT decomposition - a brief background

In [1], authors derived a generalized version of Mercer’s
Theorem [13] for asymmetric kernels and extended it to
higher-order kernels, which decomposes an asymmetric multi-
dimensional channel into jointly orthogonal subchannels. For
any multidimensional process K(ζ1,...,ζP ;γ1,...,γQ), it can be
decomposed by Theorem 1 in [1] as,

K(ζ1,...,ζP ;γ1,...,γQ)=

N∑
n=1

σnψn(ζ1,...,ζP )ϕn(γ1,...,γQ)

where E{σnσ′
n}=λnδnn′ . λn is the nth eigenvalue. {ϕn} and

{ψn} are eigenfunctions having orthonormal property as,∫
. . .

∫
ϕn(γ1,...,γQ)ϕn′(γ1,...,γQ) dγ1,..., dγQ = δnn′∫

. . .

∫
ψn(ζ1,...,ζP )ψn′(ζ1,...,ζP ) dζ1,..., dζP = δnn′

B. Multidimensional Eigenwave Multiplexing modulation

We leverage the decomposition framework in [1] and rede-
fine the eigenfunctions with multiple variables, which can be
defined as eigenwaves in multiple dimensions.

Lemma 1. (Associative property of eigenwave set projection)
Define Φa=ΣN

n anϕn(γ1,...,γQ), we have

⟨Φa,Φ
∗
b⟩ = ⟨Φab,Φ

∗⟩ = ⟨Φ,Φ∗
ab⟩ (19)

where ⟨·, ·⟩ is the eigenwave set projection operator.
ϕn(γ1,...,γQ) is Q dimensional eigenfunction.

Proof. The proof is provided in Appendix A [14].

Theorem 1. (Multidimensional Eigenwave Multiplexing Mod-
ulation and Matched Filter)



Figure 3: 2-D Eigenwave Multiplexing Modulation

Given, a M=Q+P dimensional channel transfer function
H(ζ1,...,ζP ;γ1,...,γQ) with input-output relation as

r(ζ1,...,ζP )

=

∫
. . .

∫
H(ζ1,...,ζP ;γ1,...,γQ)s(γ1,...,γQ) dγ1,..., dγQ

+ v(ζ1,...,ζP )

is decomposed into multidimensional eigenfunctions [1] as,

H(ζ1,...,ζP ;γ1,...,γQ)=

N∑
n=1

σnψn(ζ1,...,ζP )ϕn(γ1,...,γQ)

then, a given symbol set, {sn} is modulated using eigenfunc-
tions {ϕ∗n} as subcarriers given by,

s(ζ1,...,ζP ) =

N∑
n

snϕ
∗
n(γ1,...,γQ) (20)

Demodulating the received signal r(ζ1,...,ζP ) is accomplished
by employing the eigenwave matched filter, {ψ∗

n} and the
estimate ŝn is given by,

ŝn = σnsn + vn (21)

where, vn is the projection of noise v(ζ1,...,ζP ) onto the
eigenwave ψ∗

n(ζ1,...,ζP ).

Proof. Transmitting the modulated symbol s(γ1,...,γQ)
over the multidimensional channel with transfer function
H(ζ1,...,ζP ;γ1,...,γQ), the received signal is obtained by (22).
Demodulating r(ζ1,...,ζP ) with ψ∗

n(ζ1,...,ζP ), the estimated
data ŝn is given by (23), which suggests that the demodulated
symbol ŝn is the data symbol sn multiplied a scaling factor
(channel gain) σn along with AWGN, meaning there is no
interference from other symbols.

Figure 3 shows an example of 2-D eigenwave modulation
using Theorem 1. At the transmitter, each data symbol, sn is
multiplied by one eigenwave ϕn, obtained by HOGMT decom-
position and then summed to create the modulated signal. The
data symbols remain independent during transmission over the
channel due to the joint orthogonality of eigenwaves. At the
receiver, each each data symbol estimate, ŝn is obtained by
a matching filter using the eigenwave ψn, also obtained by
HOGMT decomposition giving the data symbol sn multiplied
by the corresponding channel gain, σn with AWGN, vn.
Theorem 1 is applied to non-stationary channels as follows.

Corollary 1. (MEM modulation for non-stationary chan-

Figure 4: Eigen domain view of space, time-frequency and
delay Doppler domain

nels) Given the non-stationary channel Local delay-Doppler
Response (LDR), hw(t, f ; τ, ν) in (15) with channel kernel
k(t, f ; t′, f ′), and the input-output relation in (17), the data
set {sn} is modulated by MEM as

s(t, f) =

N∑
n

snϕ
∗
n(t, f) (24)

At the receiver, interference-free estimated symbol ŝn is ob-
tained by demodulating the received signal r(t, f) using
eigenfunctions {ψ∗

n} as

ŝn =

∫∫
r(t, f)ψ∗

n(t, f) dt df = σnsn+vn (25)

where, ϕn(t, f) and ψn(t, f) are the 2-D eigenwave decom-
posed from k(t, f ; t′, f ′) by HOGMT.

Proof. It follows the same steps and deductions as in the
proof of Theorem 1, except for non-stationary channels the
multidimensional transfer function H(ζ1,...,ζP ;γ1,...,γQ) is
replaced by the channel kernel k(t, f ; t′, f ′).

Therefore, (25) shows that data symbols are only influenced
the channel gain and AWGN, while avoiding interference
in non-stationary channel by the use of MEM modulation.
Furthermore, MEM modulation can also incorporate additional
beamformer such as water filling, MVDR, etc., according to
the desired optimization criteria [15]. However, beamformers
and equalizers are out of the scope of this paper. Meanwhile,
replacing k(t, f ; t′, f ′) by k(u, t, f ;u′, t′, f ′) in (18), MEM
modulation can directly incorporate the spatial domain without
any modification. It means MEM can be directly applied to
MU-MIMO channels without additional precoding.

C. Performance analysis

Performance in stationary channels: Assuming the channel
is ergodic, as the channel is divided into N independent
subchannels (for the non-singular channel matrix/tensor, N
is the multiplication of the length of each dimension), the
capacity of MEM is the summation capacity of N subchannels.
Then the average capacity is given by,

C̄ = max
{Pn}

1

T

N∑
n

(
1 +

Pn|σn|2

N0

)
(26)

where, T is the time length. Pn and N0 is the power of sn and
vn, respectively. (26) shows that, with water filling algorithm,
MEM achieves the capacity for stationary channels.



r(ζ1,...,ζP ) =

∫
. . .

∫
H(ζ1,...,ζP ;γ1,...,γQ)s(γ1,...,γQ) dγ1,..., dγQ+v(ζ1,...,ζP )

=

∫
. . .

∫ { N∑
n=1

σnψn(ζ1,...,ζP )ϕn(γ1,...,γQ)

N∑
n

snϕn(γ1, . . ., γQ)

}
︸ ︷︷ ︸

Lemma 1

dγ1,..., dγQ + v(ζ1,...,ζP )

=

∫
. . .

∫ { N∑
n=1

σnsnψn(ζ1,...,ζP ) |ϕn(γ1,...,γQ)|2︸ ︷︷ ︸
=1

+

N∑
n′ ̸=n

σnsn′ψn(ζ1,...,ζP )ϕn(γ1,...,γQ)ϕn′ (γ1,...,γQ)︸ ︷︷ ︸
=0

}
dγ1,..., dγQ + v(ζ1,...,ζP )

=

N∑
n

σnsnψn(ζ1,...,ζP ) + v(ζ1,...,ζP ) (22)

ŝn =

∫
. . .

∫
r(ζ1,...,ζP )ψ∗

n(ζ1,...,ζP ) dζ1,..., dζP

=

∫
. . .

∫ ∑
n

σnsnψn(ζ1,...,ζP )ψ∗
n(ζ1,...,ζP ) dζ1,..., dζP+

∫
. . .

∫
v(ζ1,...,ζP )ψ∗

n(ζ1,...,ζP ) dζ1,..., dζP

=

∫
. . .

∫
σnsn|ψn(ζ1,...,ζP )|2 dζ1,..., dζP + vn = σnsn + vn =⇒ Interference-free data symbols across all degrees of freedom (23)

Performance in non-stationary channels: The capacity for
non-stationary channels is not well defined as the ergodic
assumption no longer holds. In this case, we give a qualitative
analysis about the optimality by using the concept of “diversity
achieving” for the non-stationary wireless channels. We know
from [1] that the total channel gain E2

H is given by,∫
...

∫
|H(ζ1,...,ζP ;γ1,...,γQ)|2 dζ1,..., dζP dγ1,..., dγQ

=

N∑
n

λn (27)

where, λn is nth eigenvalue, and E{σnσ′
n} = λnδnn′ . Mean-

while, the power over all received symbol rn as in (22) is,

E


∣∣∣∣∣

N∑
n

rn

∣∣∣∣∣
2
 =

N∑
n

λnPn +N0 (28)

From (27) and (28) we find that the data symbol {sn} has
leveraged all the diversity gain. The reason is that the diversity
of the multidimensional channel at each DoF (space, time-
frequency, delay-Doppler) are merged (integral along each
DoF) and then divided in the eigen domain into independently
fading subchannels or eigewaves as shown in Figure 4. There-
fore, eigenwaves achieve diversity in eigenspace, implying that
“diversity achieving” for the total channel as well.

V. RESULTS

We analyze the accuracy of MEM for non-stationary chan-
nels in Matlab using the Extended Vehicular A (EVA) model
with parameters in Table II. In all simulations, we assume
perfect CSI at both transmitter and receiver.

To show the effects of non-stationarity, we compared
our methods with OTFS for two channels: 1) Channel-A:
resolution of time evolution is one symbol. 2) Channel-B:
resolution of time evolution is one subcarrier. In channel
A and channel B, we generate the delay-Doppler response
per symbol and per subcarrier respectively, which are also
the corresponding stationarity intervals of the two channels.
We also present comparisons to OTFS with time-frequency

(a) ϕ1(t, f) (b) ϕ2(t, f)

(c) ϕ1(τ, ν) (d) ϕ2(τ, ν)

Figure 5: Eigenwaves in time-frequency, ϕn(t, f) and delay-
Doppler domain, ϕn(τ, ν)

single tap (TFST) [16] detector and Zero-Padded maximal
ratio combining (ZP-MRC) [17] detector. For fair comparison,
we also implement a Zero-Padded MEM (ZP-MEM) version,
where zero pad is placed on eigenfunctions with least σn. ZP
length is 1/8 symbol for both ZP-MEM and ZP-MRC.

To illustrate the geometry of the eigenspace, Figure 5 shows
an example of two time-frequency eigenwaves extracted from
the kernel k(t, f ; t′, f ′) by HOGMT and their representations
in the delay-Doppler Domain. Unlike OFDM and OTFS, the

Table II: Parameters of Channel-A and Channel-B

Parameter Value
Channel model EVA model

Bandwidth Bw = 960 KHz
Center frequency fc = 5 GHz

Subcarriers Ns = 64 subcarriers
Carrier spacing ∆f = 15 KHz

Speed range v ∈ [100, 150] km/h
Symbols per frame LF = 10 symbols
Frame per packet LP = 100 frames

Stationarity interval Channel A: 1 symbol; Channel B: 1 subcarrier
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Figure 6: BER and Throughput comparison between MEM and OTFS for Channel-A and Channel-B with QPSK modulation

eigenwave is an orthonormal surface across its degrees of
freedom instead of an unit division in the time-frequency or
the delay-Doppler domain. However, from another perspective,
consider a Hilbert space, HΦ with basis {ϕn}, then each
eigenwave can be seen as an unit division in HΦ. It means
MEM analyzes the channel as one unified space (eigenspace)
instead of multiple subspaces of its degrees of freedom.

Figure 6a compares the BER of MEM, ZP-MEM, OTFS
with TFST and OTFS with ZP-MRC. MEM has lower BER
than OTFS with TFST after 20 dB SNR, but higher BER
than both ZP-MEM and OTFS with ZP-MRC. This is because
demodulating data symbols on carriers (eigenwaves) with least
σn will enhance the noise as well. ZP-MEM doesn’t put data
symbols on those eigenwaves, thereby achieving lower BER.
On the other hand, ZP-MRC detector can cancel interference
among OTFS symbols and thus has the similar BER with ZP-
MEM. However, as shown in figure 6b, MEM has the highest
throughput due to no zero pad.

Figure 6c shows the BER for Channel-B, where the sta-
tionarity interval is just one subcarrier. TFST detector doesn’t
work at all in this case and ZP-MRC detector has a similar
BER as MEM because there are more interference at delay-
Doppler domain in this channel. Both ZP-MEM and MEM
are not affected because interference at delay-Doppler domain
would not affect the orthogonality among eigenwaves. MEM
still has the highest throughput as shown in figure 6d, while
TFST performs much worse in this scenario.

We also validate the generality of MEM to higher dimension
by incorporating space domain using 3GPP 38.901 UMa
NLOS senario built on QuaDriga in Matlab. The channel
parameters and results are given in Appendix B [14].

VI. CONCLUSION

In this paper, we propose a novel MEM modulation based on
HOGMT decomposition. It is able to achieve orthogonality for
non-stationary channels and generalizes to higher dimension
by using multidimensional eigenwaves as carriers, which are
are jointly orthogonal across its degrees of freedom. Therefore
MEM modulated symbols that are transmitted over multidi-
mensional channel will remain independent of each other. This
eliminates interference from other symbols in space, time-
frequency and delay-Doppler domains without any additional
precoding at the transmitter or detectors at the receiver.
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