Capacity Achieving by Diagonal Permutation for
MU-MIMO channels

Zhibin Zou, and Aveek Dutta
Department of Electrical and Computer Engineering
University at Albany SUNY, Albany, NY 12222 USA
{zzou2, adutta}@albany.edu

Abstract—Dirty Paper Coding (DPC) is considered as the opti-
mal precoding which achieves capacity for the Gaussian Multiple-
Input Multiple-Output (MIMO) broadcast channel (BC). How-
ever, to find the optimal precoding order, it needs to repeat N!
times for NV users as there are IN! possible precoding orders.
This extremely high complexity limits its practical use in modern
wireless networks. In this paper, we show the equivalence of
DPC and the recently proposed Higher Order Mercer’s Theorem
(HOGMT) precoding [1], [2] in 2-D (spatial) case, which provides
an alternate implementation for DPC. Furthermore, we show
that the proposed implementation method is linear over the
permutation operator when permuting over multi-user channels.
Therefore, we present a low complexity algorithm that optimizes
the precoding order for DPC with beamforming, eliminating
repeated computation of DPC for each precoding order. Sim-
ulations show that our method can achieve the same result as
conventional DPC with ~20 dB lower complexity for N=>5 users.

Keywords—Non-linear Precoding, MU-MIMO, Dirty Paper
Coding (DPC), Beamforming, Precoding Orders Optimization.

I. INTRODUCTION

Precoding is a very well investigated area, which can cancel
interference if the CSI is available at the transmitter [3]. DPC
is a non-linear precoding that achieves optimal interference-
free transmission by subtracting the potential interference at
the transmitter [4], which is well investigated for MU-MIMO
channels [5]. In multi-user information theory literature, the
downlink MU-MIMO channel is modeled as MIMO Gaussian
broadcast channel (BC) [6], where the sum-rate capacity
grows linearly with the number of spatial-domain degrees of
freedom [7]. DPC is proven to achieve capacity for MIMO
BC channels [8], [9], [10]. However, practical implementation
of DPC has the great challenge of very high computational
complexity. At the same time, the power allocation prob-
lem is studied in the beamforming literature from linear
methods [11], [12] to nonlinear DPC [13]. However, these
approaches only solve the problem for a fixed DPC precoding
order. An inherent problem with DPC is that for every order,
the interference coupling matrix has a different structure. Thus
finding the optimum precoding order remains a combinatorial
problem that is prohibitive, even for moderate numbers of
users. A low complexity but sub-optimal method to achieve
this has been shown in [14].

HOGMT precoding [1], [2] is the first method, which
is capable of cancelling spatial, temporal and joint spatio-
temporal interference in multi-user non-stationary channels.

This is achieved by transmitting signals on independent flat-
fading subchannels (eigenfunctions) in an eigen-domain. As
a joint spatio-temporal precoding method for multi-user non-
stationary channels, HOGMT generally analyzes a 4-D chan-
nel tensors. However, if time dimension at the transmitter and
the receiver are both collapsed, as it would be LTI channels,
it will operate on a 2-D MU-MIMO channel matrix to cancel
spatial interference only, which is exactly the same as in DPC
for MU-MIMO channels [5, Chapter 13].

In this paper, we prove the equivalence between DPC and
2-D HOGMT, since both ensure interference-free commu-
nication. 2-D HOGMT precoding is implemented by SVD
decomposition [1], which is a linear process. Therefore, the
equivalence provides an alternate linear implementation for
DPC. Furthermore, we show that the SVD decomposition
of a permuted matrix can be obtained by directly permut-
ing the decomposed components (Lemma 1). This property
does not hold for the LQ decomposition, commonly used in
implementing DPC, because the decomposed triangular matrix
cannot preserve its structure after permutation. This difference
suggests that conventional method based on LQ decomposition
needs to repeat the DPC for each permutation of the channel
matrix (or the precoding order), while the proposed alternate
method requires only one DPC computation for any arbitrary
order, followed by permuting the decomposed components to
find the optimal order, avoiding unnecessary iterations. The
contributions of this paper are summarized as follows:

« We show the equivalence between DPC and 2-D HOGMT
precoding with effective channel gains, and give an
alternate implementation for DPC.

e We give a general beamforming optimization method
by designing a diagonal matrix according to the target
criteria under certain constraints.

o We show the difference between SVD and LQ decompo-
sition under the permutation operation and demonstrate
the alternative implementation of the DPC is able to
optimize precoding order by the diagonal permutation.

« We show the convergence of the proposed method and
validate the equivalence by the simulation.

II. BACKGROUND & PRELIMINARIES
A. DPC for MIMO Broadcast Channels

Consider a BC channel with N transmit antennas and N
single-antenna users (MU-MISO), H € CV*N, where the



received signal y € CV*! is given by,
y=Hx+v (D)

where, x € CV*! is the precoded signal and v € CN*!
is AWGN. Computationally, DPC performs LQ decomposi-
tion followed by a series of Gram-Schmidt processes [5].
The channel matrix, H is decomposed as H=LQ where,
L € CN*N and QV*N is a triangular and unitary matrix,
respectively. Let X=[ x1,...,2y |7 denote the precoded
signal for s=[ s1,...,sny |7 to cancel the effect of L. By
transmitting x=Q %, the effect of Q is cancelled and (1) is
rewritten as,

y =Hx+v=LQQ"x +v
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Therefore, for n™ user, there is no interference from users
n/>n and the interference from users n'<n is cancelled by
the Gram—Schmidt process as,
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Substituting (3) in (2), the received signal is given by,
y=Drs+v 4)
where, D, = diag(L) and [,,,, is the channel gain for user n.

Multi-antenna users case (MU-MIMO): For multi-antenna
user case, each row in (2) corresponds to one antenna instead
of one user and then each user would incorporate multiple
rows as well as multiple elements X,, in (3). For notational
simplicity, we use the expression of the single-antennas user
case as it does not affect the underlying theory in this paper.

B. HOGMT Precoding

HOGMT precoding [1] cancels the spatial, temporal and
joint spatio-temporal interference in a 4-D double-selective
channel, modeled as in [15],

hia(t,7) h e (t,7)
H(t,7) = : &)
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where, hy . (t,t') is the multi-user time-varying impulse re-
sponse. Then the received signal is given by,

r(u,t) = //kH(u,t;u’,t')s(u',t') du' dt' +v(u,t) (6)

where, v(u,t) is AWGN, s(u,t) is the data symbol and
Eyu (t,t")=hy u (t,t—t") is the 4-D channel kernel [16], [17].

HOGMT decomposition is the first method to decompose a
4-D channel kernels as follows,

kH(U,t;’U,/,t/) = Zj:l O'n'(/}n(uvt)qbn(u/at/) (7)

with orthonormal properties as in (8),
<¢n (uat)v’lr/)l:’ ('U'at)> = Onn/ ®)
<¢n (uvt)>¢2’(u>t)> = 6nn’
Both (7) and (8) show that the 4-D channel kernel is decom-
posed into jointly orthogonal subchannels (eigenfunctions).
Then the precoded signal (u,t) based on HOGMT is derived

by combining the jointly orthogonal eigenfunctions with the
desired coefficients x,, as,

(s(ust),¥on (unt))
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N
x(u,t)= Z Tn @y, (u,t) where, x,=

n=1

)

Transmitting z(u, t) over the channel, the received signal is
directly the combination of data signal and noise without
complementary post-coding step as 7(u,t) = s(u,t) +v(u,t).
It shows that HOGMT precoding can achieves interference-
free communication for multi-user non-stationary channels.

III. EQUIVALENCE OF DPC AND HOGMT PRECODING

DPC achieves capacity for MU-MIMO BC channels but
is a non-linear precoding with impractical complexity. On
the contrary, HOGMT achieves the same interference-free
communication for multidimensional non-stationary channels
and has a linear implementation. If there exists equivalence be-
tween them, then we can use it as an alternate implementation
for DPC for practical system implementation.

Theorem 1. (DPC and 2-D HOGMT precoding with effective
channel gains are mathematically equivalent)

Given a channel matrix H with entries h(u,u’) and data
symbols s=[s1, ..., sn| T, the 2-D HOGMT precoded signal is,

(s(u), o (u))

n

N
z(u) = an¢2(u) where, x, = (10)

where o, ¢n(u) and ¥,(u) are given by 2-D HOGMT

decomposition as h(u,u’)= Zg Onthn (W) dp (u') [1].
Then the DPC precoded signal is given by

(1(u), s(u), Pn(u))

On

N
x(u) = anqb;(u) where, x,, = (11)

where, [(u) is the continuous diagonal element of Dy, in (4).

Proof. Let x=Ws, where W is the precoding matrix. Then
we can write,

y=Hx+v=LQWs+v (12)

Substituting (4) in (12), we have W=Q”L~'Dy,. Decom-
posing L by SVD as L = U, XV we get,
W =Qvy3, 'UIDy, (13)

Meanwhile, the SVD of H can be also represented by the
SVD of L as,

H=LQ = (UpZ.V,.")Q

= ULZL(Q¥ V) =UxVH (14)



DPC with Gram-Schmidt
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Figure 1: A low-complexity implementation of DPC

Therefore we have the following equivalence,

U=Ug, =3 and V = Qv (15)
Substituting (15) in (13) and noting that Q is unitary,
W =VI 'U’Dy, (16)
Then the transmitted symbol x is given by,
x=Ws=VI U Dys (17)

Note that the precoded symbol for user u is the v row of x.
By expanding (17), we have

N N
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T

(18)

where, vy, and ., are the elements of V and U respectively
and o, is n'" diagonal element of X.

Now, rewriting (18) using two arbitrary continuous-time
complex functions, ¢} (u) and ¥} (u) we get,

(U(w), 5(w), Pn(u))

n

N
x(u) = Z:cndﬁi(u) where, z,, = (19)
where, z(u), s(u), and I(u) is the continuous form of x, s
and {l, }, respectively.

Meanwhile, the continuous form of SVD of H, yields the
two eigenfunctions, ¢ and 1) according to the the 2-D HOGMT
decomposition in (20) by collapsing time dimension in (7),

k(u,u') = Spomén(u)(u') (20)
Therefore, we have the 2-D form of (9) as,
N
x(u) = anqﬁfl(u), where, ©,, = (5(w), ¥n (1)) 21

Therefore, observing the similarity of (19) and (21) we find
that DPC is mathematically same as 2-D HOGMT precoding
after scaling by the effective gain, I(u). O

Figure 1 illustrates the equivalence shown in Theorem 1 to
provide an alternate implementation of DPC using HOGMT,
as in (16). Note that the non-linearity of DPC is due to
the iterative feedback required by the Gram—Schmidt process
as shown in Figure 1 Therefore, because of the equivalence

Power [dB]
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Figure 2: AP and PAPR for different precoding orders

and the linear implementation of 2-D HOGMT precoding by
SVD provides significant computational advantage in practical
implementation of DPC in MU-MIMO channels.

A. Beamformer optimization

From Theorem 1, the beamformer is obtained by designing
an optimal pre-equalizer, b(u) for the u™ user. Then z,, in (11)
can be expressed as

(b(w), l(u), s(u), Yn(u))
On
Specifically, if b(u) = 1/l(u), then the DPC implemented
using (11) is numerically equal to 2-D HOGMT in (10).
Let k(u) = b(u)l(u), which is the desired effective gain,
and denote the discrete form of k(u) as diagonal matrix K,
then (16) with beamformer is given by,

(22)

Ty =

W=V lUfK (23)

Then the beamformer design is to find a diagonal matrix K to
replace Dy, in (16). The optimal K is obtained by the objective
function f(-) under the power constraint P as follows:

f(K)
st. tr(WWH) < p

arg max
K (24

IV. PRECODING ORDER OPTIMIZATION FOR DPC
A. Optimum precoding order

DPC treats each user as one layer and iteratively precodes
on previous layers by treating the interference from previous
layers as dirty. This process is widely termed as writing on
dirty paper. Since each user channel is different, the order of
these layers (users) affects the precoded signal [14].

Figure 2 shows the Average Power (AP) and Peak-to-
Average Power Ratio (PAPR) of DPC with 4 users for differ-
ent precoding orders. The total number of precoding orders
is 4!=24. We observe that AP and PAPR vary with each
precoding order. Figure 3 shows the constellation diagram
for DPC with minimal AP, maximal AP, minimal PAPR and
maximal PAPR precoding orders, where the scatter plot of
each layer is writing on previous layers. The gap between
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Figure 3: 16-QAM constellation of 4-user DPC with

scatter plots of layers is largest in Figure 3a and smallest
in Figure 3b, as the corresponding precoding order gives the
maximal PAPR and minimal PAPR respectively. Figure 3c has
the maximal boundary for scatter plots while Figure 3d has the
minimal boundary, which suggests maximal AP and minimal
AP respectively.

The complexity of searching the optimal DPC order is
known to be O(N3N!) [18]. The number of possible DPC
precoding order is N! for a N-user case. Now, for each order,
DPC is repeated and then the precoded signal is compared
based on the given constraint criteria to find the optimal order,
which is extremely expensive computationally.

However, from Theorem 1 and Figure 1, we find that the
precoded matrix consists of the components from the SVD
and LQ decomposition only. The relation of the precoded
matrix W and the permutation of channel matrix H is given
by Lemmal.

Lemma 1. Let H.(,,) be the permutation, by order w(m) of
a given channel matrix with SVD, H=UXV . Then the SVD
of Hy () is given by permuting U by the same order m(m),

H, () = Up(n)EVH (25)

Proof. Given a matrix G consisting of basis vectors {e,},

e 1 0 0
€9 0 1 0

G= = (26)
ey 0 0 1

if {e,} is rearranged by a given order w(m), we get the
permutation operator G (,,). Then permutation of a matrix
by order 7(m) can seen as the multiplication by G(,,,). Thus
the permuted matrix Hy(,,) is given by

H, (n) = GrmH = Gr(,,) USVH (27)

Note that (Gﬂ.(m)U)(Gﬂ(m)U)H:Gﬂ(m)UUHGf(m) =
Gﬂ(m)IGWH(m) = I, implying (G () U) is an unitary matrix.

Let Ur(m) = Gr(m)U, then (27) can be rewritten as

O

(c) Maximal AP order, m = 13 (d) Minimal AP order, m = 16

different precoding order, 7(m) and power constraints

B. Permutation on SVD and LQ decomposition

Lemmal shows that the SVD of the permuted matrix H (,,)
can be represented by the linear combination of permutation
operator G,T(m) and SVD of H, i.e.,

SVD(H (1)) = Gr(m)SVD(H) (29)

This shows the linearity of SVD with respect to permutation.
However, it is not the same for LQ decomposition, as the
triangular matrix L is unable to maintain its triangular struc-
ture after permutation and since, G (,,)L is not a triangular
matrix the LQ decomposition of a permuted matrix can not be
obtained by permuting the decomposed component. Therefore,

(30) shows the non-linearity of LQ decomposition with respect
to permutation, which requires conventional DPC to repeat LQ
decomposition for each permutation of channel matrix H to
find the optimal order for precoding .

From Lemma 1, we find that permutation of H only changes
the order of the elements of U. Therefore, using (23), the
precoding matrix under permutation, Wy, is,

W,, =V 'uf K

w(m)

€1y

Thus the optimal order can be obtained by an one-time DPC
for an arbitrary order using 2-D HOGMT and then comparing
each order by permuting the unitary matrix U and data signal
s. Thus we have the Theorem 2.

Theorem 2. The optimal precoding order for DPC with effec-
tive channel gains K is obtained by permuting the diagonal
elements of K.

Proof. The DPC precoding order is optimized as follows,

argmin  g(x,,)
{m(m)}
S.t.

(32)
Hr () Wi = Kr(m)
where X, = WSy, and Sy(m) = Gr(n)s is the permu-
tation of data signal s by order 7w(m). g(-) is the objective
function according to the given criteria such as minimal AP,
minimal PAPR, etc.

Remark 1: (Diagonal permutation) Given a permutation op-
erator G (,;,), which permutes the rows of matrix by the
order 7(m), for a diagonal matrix D, permuting the diagonal



elements on the diagonal direction by the order m(m) is,

D‘n’(m) = (G7Ir{( )DG‘n'(m)) (33)

m

Then the precoded signal is given by,

Xm = Wms‘n'(m)
= VE G (m)U)KG (s
= VE‘lUH (GH )KGW(m)) S

w(m
—_—

Diagonal permutation

= VE UK, (s (34)

where K (,,) is a diagonal matrix having the same elements
of K with diagonal entries ordered by 7(m). O

Theorem 2 shows that the solution of optimal precoding
order with respect to arbitrary objective function g(-) can be
obtained by looping over all precoding orders, where for each
precoding order, the proposed method can avoid repeating the
decomposition by simply permuting a diagonal matrix.

C. Convergence of beamforming and precoding orders for the
same Sstrategy

Specifically, the beamforming for the optimal power alloca-
tion already achieves minimal power precoding order as shown
in Corollary 1.

Corollary 1. The optimal power allocation strategy achieves
minimal power precoding order.

Proof. In Theorem 1, given power constraint trf( WW) <
P, the precoding matrix W with optimal power allocation
beamforming is obtained by

W =V lUfK

where, K = diag(k1, ..., kyn). k, is the effective gain for n'
user and can be designed by the water-filling algorithm as

1 +
kn =V pn)\ny WherQ Pn = <,UJ - )\> (36)

where y is a constant to ensure power constraint, and \,, = o2

is n'" eigenvalue where o, is the n' diagonal element of X.
(z)T is defined as max(x,0). On the other hand, to find the
optimal precoding order with respect to minimal power, set
g(x)=E{|x|?}, then (32) is rewritten as,

(35)
h

argmin  E{|x,,[*}

{r(m)} (37)
S.t. Hﬂ.(m)Wm =K,
Substituting (34) in (37), we have
N 1.2
arg min “nm(m) (33)

frm} 57 An
where, K, (m) is n™ diagonal element of Ky (m). Thus, the
optimal order in (37) is obtained by simply permuting K.
(38) suggests that the order {m(m)} ensures {kj r(m)}
has the same magnitude order as {\,}, achieves the optimal

solution. Meanwhile, as k,, in the original K given by (36) has
the positive relation with ), it is ranked by the same order
as \,, which is the solution of the optimization (38). Thus the
original order of k,, is already optimal. O

The beamforming optimization for optimal power allocation
has the same objective as the precoding order optimization for
minimal power. They are reasonable to converge to the same
solution. Thus the equivalence shown in Corollary 1 validates
the correctness of the proposed precoding order optimization.

D. Capacity achieving by diagonal permutation

The procedure to implement the equivalent DPC (capacity-
achieving technique) with precoding order optimization is
given in Algorithm 1. First, decompose the CSI by SVD
as H=UXV¥# using Theorem 1 and then constitute W
by the decomposed components with the channel effective
gain K as in (23), where K is obtained by solving (24).
To find the optimal precoding order, we collect the all per-
mutation orders {m(m)}*_,, where for N users, there are
M=N! precoding orders. For the precoding order w(m), the
corresponding precoded signal x,;,=W ;S () is obtained
from (34), which only diagonally permutes K by order 7(m)
as Kym) = GwH(m)KGﬁ(m). The precoded signal with opti-
mal precoding order is obtained by looping over all orders and
comparing the corresponding precoded signal by the decision
function g(+). In practice, g(+) is based on desired criteria such
as minimal AP or minimal PAPR.

Algorithm 1: Capacity achieving by diagonal permu-
tation
1 Input: Data s, CSI H, beamforming optimization function
f(-), power limitation P, decision function g(-);
2 Output: Precoded signal x;
3 Decompose H by SVD decomposition
[U,X, V] =SVD(H);
4 Solve arg maxy f(K), under the constraint
trf(WW*) < P, where W = VE'UXK to get K;
5 Collect diagonal permutation orders {7 (-)} of K;
6 Initialize the order index m = 1;
7 Permute K by order 7(m) to get K (n);
8
9

Initialize x = VE UK (,n);

while m < size({7(-)}) do
10 m=m-+1;
1 Update K (,,,) by permuting K by order 7(m);
12 Xm = VE UK (1)
13 Update x by decision function x = g(Xm, X);
14 end

Conventional DPC implementation needs to repeat DPC for
each precoding order, whose complexity is O(N3N!) for N
users case. In contrast the proposed algorithm requires a one-
time DPC and then search for the optimal precoding order by
just permuting the channel gain matrix that has a computa-
tional complexity of O(N® + N!). Figure 4a shows that for
multi-user cases, i.e., N > 2, the proposed methods always
achieve lower complexity than conventional DPC. For users
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number N = 5, the complexity ratio of conventional DPC
over proposed method is ~20 dB, which is very encouraging.

V. RESULTS

We validate the equivalence of the proposed methods and
conventional DPC with perfect CSI at the transmitter using
MATLAB simulations. The number of the transmitter antennas
and the users are both N=10, where each user is equipped
with one antenna. The coefficient of the channel matrix is
generated by standard Gaussian distribution. The effective
channel gain of both methods are normalized. Figure 4b
compares the BER of Block Diagonalization (BD), Tomlinson-
Harashima Precoding (THP), Minimum Mean Square Error
(MMSE) precoding, conventional DPC and proposed method
for QPSK. It is evident that the proposed method achieves
the similar result as conventional DPC and outperforms other
techniques, supporting the theoretical equivalence discussed
earlier. The proposed method for various modulation schemes
is compared in Figure 4c.
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VII. CONCLUSION

In this paper, we show the equivalence of DPC and 2-
D HOGMT precoding for MU-MIMO channels and give
an alternate low-complexity implementation based on SVD
decomposition to replace the iterative method based on Gram-
Schmidt processes and LQ decomposition. Then we show the
difference between SVD decomposition and LQ decompo-
sition with respect to permutation, where an unitary matrix
after permutation is still unitary but a triangular matrix cannot
maintain its structure under the same permutation. This differ-
ence suggests that conventional method needs to repeat DPC
for different precoding orders while the proposed method just
needs one-time DPC and then searches the optimal precoding
order by permuting a component of the precoding matrix,
which is also shown the convergence. Simulations show that
our method is able to achieve the same BER performance as
DPC but with less complexity. For N = 5 users case, the
proposed method achieves near 20 dB lower complexity.
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