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Abstract—In this paper, we propose an explainable neural
network for decomposing channel kernels into Eigenwaves and
implement practical Multi-dimensional Eigenwave Multiplexing
(MEM) over doubly selective channels. The quality of Eigenwave
decomposition is evaluated using three key metrics: 1) eigenvalue,
2) orthogonality, and 3) duality. The eigenvalue determines the
subchannel gains in the eigen domain, while orthogonality and
duality impact the interference from other symbols and the
distortion of the target symbol, respectively. We prove that
maximizing the sum of eigenvalues is equivalent to minimizing the
MSE loss function and demonstrate that the duality and orthogo-
nality constraints not only minimize interference for multiplexing
but also guide the convergence for NN. Furthermore, we show
that these duality and orthogonality constraints are equivalent,
allowing them to be combined for model simplification. To further
enhance the adaptability of the proposed method, we introduce
a second NN architecture that incorporates the Augmented
Lagrangian Method (ALM). This approach eliminates the need
for retraining under different MIMO scales and does not require
parameter tuning. We evaluate the proposed methods under two
scenarios: 1) 2-D doubly selective channels, and 2) 4-D doubly
selective MIMO channels with both perfect imperfect Channel
State Information (CSI) and imperfect CSI.

Keywords—Eigen-decomposition, Multi-dimensional channel,
Interference cancellation, Neural Networks.

I. INTRODUCTION

Wireless channels with time-varying multipath fading
cause dispersion in both time and frequency and are gener-
ally called Linear Time-Varying (LTV) channels. Specifically,
multipath leads to time dispersion, resulting in frequency
selectivity, while the time-varying gains of each path cause
frequency dispersion, leading to time selectivity. This type
of channel is referred to as a doubly selective channel [1].
Compared to Linear Time-Invariant (LTI) channels, waveform
design is challenging for doubly selective channels because of
joint interference across Degrees of Freedom (DoFs).

Modulation is a general approach in communication sys-
tems where data-symbols modulate a set of orthonormal basis
waveforms. A classical scheme is Orthogonal Frequency-
Division Multiplexing (OFDM), which divides the frequency
selective frequency bands into multiple coherent subspaces
to avoid Inter-Symbol Interference (ISI) caused by time dis-
persion. Along with a cyclic prefix, OFDM symbols are
interference-free in LTI channels. However, when the channel
becomes time-selective, frequency dispersion introduces Inter-
Carrier Interference (ICI) [2]. Orthogonal Time Frequency
Modulation (OTFS) [3], [4] has been proposed to mitigate
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Figure 1: In LTI channels, OFDM and OTFS bases are
fixed lattice bases that divide the coherent subspaces along
their boundaries. However, in doubly selective channels, the
subspaces are irregular and lattice bases imperfectly divide the
subspaces resulting in joint interference across the DoFs. In
contrast, Eigenwaves are jointly orthogonal across all DoFs,
providing division-free bases that are maintain orthogonality
during transmission in doubly selective channels.

joint interference in the time-frequency domain by employing
orthogonal bases in the delay-Doppler domain. When the chan-
nel is rapidly time-varying, the acceleration variance causes
Doppler dispersion causing the OTFS symbols to experience
Inter-Doppler Interference (IDI) [5], [6].

Eigenfunctions, also referred to as Eigenwaves, are consid-
ered optimal basis functions [1] [7, Section 2.5.2.1] [8]. Since
Eigenwaves are orthogonal in the eigen domain, they achieve
orthogonality across all Degrees of Freedom (DoF), regardless
of how the channel is represented. The channel effect on each
basis function then simply reduces to a multiplicative scalar,
eliminating interference between the basis functions. Figure 1
shows the differences between three types of bases. OFDM
and OTFS bases are orthogonal divisions in the frequency
domain and delay-Doppler domain, respectively, achieving
orthogonality only within their specific domains. In contrast,
Eigenwaves are jointly orthogonal surfaces across the chan-
nel’s representation domains, which are not necessarily limited
to the time, frequency, and/or delay-Doppler domains. In LTI
channels, OFDM and OTFS bases can perfectly divide co-
herent subspaces. However, this is challenging under complex
channel conditions. Longer pulses reduce ISI but are more
susceptible to ICI due to time selectivity, while shorter pulses
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reduce ICI but are more prone to ISI due to frequency selectiv-
ity. In OFDM and OTFS, the bases are pre-defined and thus the
orthogonality is influenced by the properties of the channel. In
contrast, Eigenwaves are decomposed from the channel kernel,
a fundamental representation of the channel [9]–[11], ensuring
that orthogonality is preserved during transmission. Unlike the
Fourier bases of OFDM and OTFS, which are directly obtained
through the Discrete Fourier Transform (DFT) and Symplectic
Fourier Transform (SFT) respectively, there are no predefined
Eigenwaves for doubly selective channels1.

Mercer’s Theorem decomposes a symmetric kernels into
infinite Eigenwaves. However, in wireless communication the
channel kernel (2-D matrix or 4-D tensor) is often asymmet-
ric [11]. Therefore, High Order Generalized Mercer’s Theorem
(HOGMT) [12] has been proposed to generalize the decom-
position for multi-dimensional asymmetric kernels (reviewed
in Section III), demonstrating the existence of Eigenwaves for
any wireless channels. In general, a multi-dimensional channel
kernel is represented as a tensor instead of separate matrices
to capture the joint interference across the dimensions. How-
ever, decomposing tensors according to HOGMT via linear
algebraic methods suffer from extremely high computational
overhead [12], which limits its adoption for real-time signal
processing in next Generation (xG) wireless networks.

One of the advantages of Neural Network (NN) over
linear methods is its ability to extract non-linear relation-
ship among hidden variables with manageable computational
complexity. This motivates us to embrace NN to implement
practical HOGMT-based eigenwave multiplexing. The liter-
ature on NN-based eigen decomposition apply a black-box
approach that focuses on learning the format and properties of
eigenvectors [13] without explaining how and why its outputs
converge to the eigen components (e.g., vectors, tensors, or
functions). However, stringent requirements on reliability and
throughput in xG wireless propagation environments [14],
[15] demand performance guarantees for NN transceivers. To
address this, we construct a provable trilateral relationship
among multiplexing, HOGMT, and NNs. Since, multiplexing
minimize interference between the DoFs while achieving
diversity, eigenwaves obtained from HOGMT provide the
optimal bases for doubly selective channels with eigenvalues
translating to subchannel gains. By mapping these properties to
the objective function of the NN, we implement HOGMT for
optimal multiplexing with practical complexity. Overall, this
paper answers three open problems discussed in the literature:
• “How to obtain eigenfunctions for the the doubly selective

channels in practice?” [1] [7, Section 2.5.2.1].
• “What is the optimal training for doubly dispersive MIMO

channels?” [16].
• “How can MMSE gains be leveraged through online learn-

ing of the channel statistics” [16].
Our approach provides promising solutions to these prob-

lems due to the following: 1) the praticality of HOGMT-
1With cyclic prefix, OFDM bases serve as common Eigenwaves for all LTI

channels, but this does not hold for doubly selective channels.

based NN, 2) the optimality of employing Eigenwave as bases
for doubly selective MIMO channels, and 3) the equivalence
between MMSE gains and subchannel gains in the eigen
domain. To further enhance the practicality of the proposed
method, we embrace ALM into our architecture which avoid
the exhausting tuning for the parameters and is adaptive to
varying channel types such as 2-D doubly selective channels
and 4-D doubly selective MIMO channels.

The rest of the paper2 is organized as follows: Section II
reviews related work in the field, while Section III provides the
necessary technical background on lattice bases, the general
channel kernel and HOGMT. In Section IV, we formulate
the finite Eigenwave approximation problem and show that
the duality and orthogonality of Eigenwaves are essential for
achieving optimal bases over doubly selective channels. In
Section V, we show that the MSE loss function optimizes
both the kernel approximation and subchannel gains, which
is employed in the design of an explainable NN, HNet, for
HOGMT, with outputs converging to Eigenwaves. Section VI,
presents an adaptive architecture AHNet by incorporating
ALM to adapt the NN parameters for different channel types
and distributions along with complexity analysis for HNet and
AHNet. AHNet is used to implement the AHNet-MEM system,
where the NN outputs are subchannels or eigenwaves of the
channel kernel. Section VII details the data generation and NN
training, with channel kernel generated from QuaDriga [18]
that exhibit dispersion in both time and frequency domains.
The accuracy of AHNet, HNet and the performance of
AHNet-MEM is evaluated in Section VIII, in two scenarios:
1) 2D doubly selective channels, and 2) 4D doubly selective
MIMO channels under both perfect CSI and imperfect CSI. Fi-
nally, discussions about the cost, opportunities and concluding
remarks are given in Section IX and Section X, respectively.

II. RELATED WORK

Lattice Bases for Waveform Design: OFDM is the most com-
mon modulation which minimizes interference in LTI channels
by designing lattice bases in the frequency domain. While,
OTFS is proposed to cancel interference in the time-frequency
domain by designing lattice bases in the delay-Doppler do-
main [3]. Orthogonal short-time Fourier (STF) lattices are
explored for signaling in doubly dispersive channels [1].
There are many investigations on the lattice design based on
Weyl–Heisenberg and Gabor frames [19]–[22]. However, these
are suboptimal alternatives for the Eigenwaves, which are

2This manuscript is a combined extension of prior publications [8], [17].
In [8], we formulated a general kernel for multi-dimensional channels and
proposed an equivalent NN for implementing HOGMT, providing a perfor-
mance benchmark for MEM with non-orthogonal Eigenwaves. Based on this,
we introduce an adaptive NN by incorporating ALM in [17]. However, these
works did not implement a practical NN-based MEM. This journal article
extends the previous studies from both theoretical and system perspectives.
Theoretically, we establish provable trilateral relationships among multiplex-
ing, HOGMT, and NN, demonstrating step-by-step how the eigenvalues,
duality and orthogonality of Eigenwaves relate to multiplexing performance
and map to the NN’s objective function from first principles. From a systems
perspective, we utilize practical 4-D channels generated by QuaDriga to assess
NN convergence and evaluate MEM performance using NN outputs.
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considered as the optimal waveforms, though undesirable due
to the limitation of tools [1], [7]. This motivates us to design
NN for decomposing eigenfunctions for practical waveforms.
Modulation divides data into orthogonal subcarriers, while
multiple access techniques such as Orthogonal Frequency
Division Multiple Access (OFDMA) [23] and Pattern Division
Multiple Access (PDMA) [24] assigns the subcarriers to dif-
ferent users. Unlike precoding these methods are not designed
to cancel Inter-antenna-interference (IAI) in MIMO channels
due to interference among subcarriers. Instead, they manage
and mitigate interference in unique ways, enabling multiple
users to share resources simultaneously. Similarly, MEM can
be easily extended to Multi-dimensional Eigenwave Multiple
Access (MEMA). Since this paper focuses on multiplexing, a
detailed exploration of multiple access is beyond its scope.
Eigen Approximation Problem: There are some the-
oretical works analyzing eigen approximation problems.
Karhunen–Loève Theorem (KLT) approximation is proven to
be optimal for the random process approximation by finite
eigenfunctions in [25]. Eckart–Young–Mirsky Theorem shows
that SVD is optimal for low-rank matrix approximation [26].
Nyström approximation [27] shows rank-k approximation us-
ing SVD is optimal for Symmetric Positive Semi-Definite
(SPSD) matrix. However, there is no optimality analysis
for eigenfunction approximation for multi-dimensional asym-
metric kernels in the literature. For the implementation of
eigen approximation, [13] present black-box NNs for SVD
decomposition, which is applicable for matrices. [28] proposed
a NN-based method for extracting eigenfunctions based on
Mercer’s Theorem However, it fails to show the optimality of
eigen approximation and is only applicable for symmetric ker-
nels. [12] generalize Mercer’s Theorem to multi-dimensional
asymmetric kernels. However, its implementation using linear
Algebra suffers from high computational complexity.
Explainable Neural Networks in Communications: The
explainability of NN-based transceivers is very rare in the
literature, attributed primarily to their black-box implemen-
tation. [29] combines an autoencoder with a classical OFDM
system to inherit its advantages, including robustness to syn-
chronization errors and multipath equalization. The model-
driven OFDM receiver in [30] combines DL with expert
knowledge and implements two subnets for channel estimation
and symbol detection modular structure similar to classical
systems. Model-driven NN shows a competitive performance
with data-driven approaches but with a lower number of
trainable variables than the black box architecture. However,
these approaches are limited by the flexibility and accuracy
of the underlying model and the trained weights, which limits
their applicability to specific channel conditions. In contrast,
we ensure performance guarantees for the NN by explaining
its internal mechanisms that achieves equivalence to HOGMT.
Additionally, the designed NN does not directly produce the
transmitted signal; instead, it extracts Eigenwaves from the
kernel, following NN’s feature extraction principle.

III. PRELIMINARIES AND BACKGROUND

A. Lattice Bases

In general, the channel effect is caused by both multipath
delay τ and Doppler shifts ν. The received signal r(t) can
be given by a transmitted signal x(t) undergoing a channel
operator H [11] as

r(t)=H(x(t))=
∫∫

SH(τ,ν)x(t−τ)ej2πνt dτ dν (1)

where SH(τ,ν) is the (delay-Doppler) spreading function,
which describes the combined attenuation factor for all paths
in the delay-Doppler domain.

Let {gl,m(t)} be orthonormal time-frequency lattice bases
with time slot index l and frequency slot index m (for
OTFS, the lattice is in the delay-Doppler domain), orthogonal
multiplexing methods modulate data symbols {sl,m} onto
these bases by

x(t)=
∑
l,m

sl,mgl,m(t) (2)

Given the signaling duration time T , time separation T0,
bandwidth B and frequency separation B0, the dimension of
the signal subspace is approximately N=⌈ TFT0F0

⌉, where ⌈x⌉
is the least not less than x. The received data symbol at (l,m)
by match filter is given [1] as

rl,m=
∑
l′,m′

clm,l′m′sl′,m′+vlm (3)

where cl′m′,l,m is a coefficient that measures the degree of
matching between the transmit basis gl′,m′(t) and the receive
basis gl,m(t), given by

clm,l′m′=⟨H(gl′,m′(t)),gl,m(t)⟩ (4)
where ⟨a(t),b(t)⟩=

∫
a(t)b∗(t)dt is the inner product.

Coherence time Tcoh and coherence bandwidth Bcoh are
measurements for the variation of the channel in time and fre-
quency domain, respectively. When TcohBcoh≥1, the channel
called underspread, otherwise called overspread. Ideally, the
bases should be subdivided within the coherence subspace as
shown in, so that the bases would not undergo interference
from each other, i.e., clm,l′m′=0 for l ̸=l′ and m̸=m′.

B. General Channel Kernel

The doubly selective channel can be represented in dif-
ferent domains. The time domain continuous input-output
relations [11] is given by,

r(t)=

∫
h(t;τ)x(t−τ) dτ=

∫
k(t;t′)x(t′) dt′ (5)

where h(t;τ) is the time-varying impulse response. k(t;t′)=
h(t;t−τ) is the channel kernel defined in [9], [11]. In OFDM,
OTFS, and MIMO systems, the channel is represented in the
frequency, delay-Doppler, and spatial domains, respectively.
Since Eigenwaves are bases in a unified eigen domain, we
formulate the general input-output relation for doubly selective
channels as,

r(Z)=

∫
H(Z;Γ)x(Z−Γ) dΓ=

∫
K(Z;Z ′)x(Z ′) dΓ (6)

where H(Z;Γ) is the multi-dimensional transfer function.
K(Z;Z ′)=H(Z;Z−Γ) is the general channel kernel. Z and

3
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Table I: Eigen decomposition methods

Method Formulation Applications
SVD H=UΣV ∗ Precoding

KLT e(t)=
∑∞

n=1σnϕn(t) Signal detection

Mercer’s Theorem e(t,t′)=
∑∞

n=1λnϕn(t)ϕn(t
′) Feature extraction

HOGMT K(Z;Z′)=
∑∞

n=1σnψn(Z)ϕn(Z′) General to above

Z ′ can be seen as the signal domains at the receiver
and transmitter, respectively. In the time-frequency domain,
(Z;Z ′)=(t,f ;t′,f ′), while in the space-delay-Doppler domain,
(Z;Z ′)=(u,τ,ν;u′,τ ′,ν′), where u and u′ denote the antenna
index at the receiver and transmitter, respectively. Note that
K(Z;Z ′) is considered asymmetric for the general channel,
i.e., K(X;Y )̸=K(Y ;X).

C. High Order Generalized Mercer’s Theorem

A symmetric kernel e(t,t′) can be decomposed into one
Eigenwave set in two domains by Mercer’s theorem as,

e(t;t′)=

∞∑
n=1

λnϕn(t)ϕn(t
′) (7)

where, ϕn denotes the Eigenwave and λn is the corresponding
eigenvalue. HOGMT generalizes Mercer’s Theorem for multi-
dimensional asymmetric kernels in (6), into two different, low-
dimension, jointly orthogonal Eigenwave sets as3,

K(Z;Z ′)=

∞∑
n=1

σnψn(Z)ϕn(Z
′) (8)

where E{σnσ′
n}=λnδnn′ . λn is the n-th eigenvalue and

ψn(Z) and ϕn(Z ′) are orthonormal Eigenwaves, i,e.,∫
ϕn(Z

′)ϕ∗n′(Z ′)dZ ′=δnn′ ;
∫
ψn(Z)ψ

∗
n′(Z)dZ=δnn′ (9)

These Eigenwaves are referred as dual Eigenwaves that
exhibit the important duality property,∫

K(Z;Z ′)ϕ∗n(Z
′) dZ ′=σnψn(Z) (10)

Table I shows the existing eigen-decomposition methods.
SVD is limited to 2-D matrices and is commonly applied in
SVD-based precoding for MIMO channels. KLT, while use-
ful for signal detection, cannot decompose high-dimensional
kernels into lower-dimensional Eigenwaves. Mercer’s theo-
rem, applicable only to symmetric kernels, is widely used
for feature extraction in machine learning. As a generalized
version of Mercer’s Theorem, HOGMT can decompose any
multi-dimensional kernel into low-dimensional Eigenwaves,
providing theoretical evidence that eigenwaves exist for any
wireless channel. The signal space at the transmitter, with
DoFs Z ′ is spanned by Eigenwaves {ϕn} while the signal
space at the receiver, with DoFs Z is spanned by Eigenwaves
{ψn}. According to the duality of Eigenwaves, the two eigen
spaces can be mapped onto each other, enabling the transmis-
sion of symbols in the two eigen spaces by multiplexing and
demultiplexing. It is important to note that the orthogonality
of Eigenwaves is not affected by the general kernel, making
them suitable as basis functions for doubly selective channels.

3In 1907, Schmidt defined eigenfunctions for both symmetric and asym-
metric (then termed ”unsymmetric”) kernels. However, his work only demon-
strated the existence of eigenfunctions, not a eigen decomposition [31].

IV. EIGENWAVES AS OPTIMAL BASES

A. Finite Eigenwave Approximation Problem

HOGMT is a mathematical principle to decompose any
kernel into infinite number of Eigenwaves. However, in reality,
we can only utilize a finite number of those to approximate the
kernel. To achieve maximum energy efficiency, it is desirable
to use minimum number of eigenwaves to approximate (most
part of) the kernel. Therefore, the general approximation prob-
lem is formulated as minimizing the number of Eigenwaves
N for a fixed kernel approximation error ϵ as in (11),

argmin
K̂

N s.t ∥K(Z;Z ′)−K̂(Z;Z ′)∥2<ϵ (11)

where, K̂(Z;Z ′′)=
∑N
n=1knfn(Z)gn(Z

′′) is the approximate
kernel, {fn} and {gn} are two sets of arbitrary orthonormal
bases and kn is the projection of the kernel onto the bases.

However, for fixed N (11) is equivalent to the MMSE
problem in (12),

argmin
K̂

E
{
∥K(Z;Z ′)−K̂(Z;Z ′)∥2

}
(12)

This problem is solved by proving that the approximate
kernel, K̂, reconstructed from the Eigenwaves obtained using
HOGMT is optimal in MMSE sense. The choice and trade-offs
regarding N are evaluated in Section VI-C and Section VIII.

B. Duality and Joint Orthogonality of Eigenwaves

The duality in (10) indicates that the Eigenwaves are
transferred to their dual Eigenwaves scaled only by the channel
gains when transmitting over the channel and hence immune
to any joint interference across all DoFs.
Proposition 1. The average distortion for given bases at the
transmitter and the receiver gtx(Z ′) and grx(Z) is

ϵ=E
{
∥H(gtx(Z ′))−agrx(Z)∥2

}
(13)

where ∥·∥ denote Frobenius norm. When the transmit and
the receive bases are a pair of dual Eigenwaves, i.e., a=σn,
gtx(Z

′)=ϕn(Z
′) and grx(Z)=ψn(Z), we have ϵ=0.

Proof. See Appendix A

Proposition 1 shows that for each pair of dual Eigenwaves
the channel exhibits flat-fading. Meanwhile, when multiplex-
ing with Eigenwaves, the interference from other bases can be
avoided by joint orthogonality according to (14)
Proposition 2. The received symbol is given as

rn=σnsn+

N∑
n′ ̸=n

sn′⟨H(ϕn(Z ′)),ψn′(Z)⟩ (14)

The joint orthogonality of Eigenwaves across multi-dimension
domains Z and Z ′ makes the second term zero, e.g., avoid
interference from other bases.

Proof. See Appendix B.

Note that ISI, ICI, IDI and IAI represents interference from
basis functions in different domains. Since Eigenwaves are
orthogonal in the eigen domain, they inherently avoid all joint
interference across its DoFs.

4
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V. EXPLAINABLE NN FOR DUAL EIGENWAVES

A. Loss Function Design: Maximizing the sum of Eigenvalues

In eigen-decomposition the eigenvalue is a measure for
quality of the decomposition. For a fixed number of Eigen-
waves, larger sum of eigenvalues means that more information
is extracted from the kernel. Therefore, maximizing this sum
must be part of the objective function for the NN.
Theorem 1. If K(Z;Z ′) is approximated by a finite num-
ber of Eigenwaves as K̂(Z;Z ′)=

∑N
n=1σnψn(Z)ϕn(Z

′), then
maximizing the sum of eigenvalues,

argmax
{ϕn},{ψn}

N∑
n=1

E
{
σ2
n

}
(15)

is equivalent to MMSE,
argmin

{ϕn},{ψn}
E
{
∥K(Z;Z ′)−K̂(Z;Z ′)∥2

}
(16)

Proof. Maximizing
∑N
n=1E

{
σ2
n

}
is equivalent to minimizing

its negative. Furthermore,
∫∫
E{∥K(Z;Z ′)∥2}dZdZ ′ is a con-

stant that only depends on the total transmission gains of the
channel, which is independent of the choice of {ψn} and {ϕn}.
Therefore, (15) is rewritten as

argmin
{ϕn},{ψn}

∫∫
E{∥K(Z;Z ′)∥2} dZdZ ′−

N∑
n=1

E
{
σ2
n

}
(17)

Now, notice that,∫∫
E
{
K(Z;Z ′)K̂(Z;Z ′)∗

}
dZdZ ′

=

∫∫
E
{ ∞∑
n=1

σnψn(Z)ϕn(Z
′)

N∑
n′=1

σn′ψ∗
n′(Z)ϕ∗n′(Z ′)

}
dZdZ ′

=

∫∫
E
{ N∑
n=1

σ2
n∥ψn(Z)∥2︸ ︷︷ ︸

=1

∥ϕn(Z ′)∥2︸ ︷︷ ︸
=1

+

∞∑
n ̸=n′

σnσn′ψn(Z)ψ
∗
n′(Z)︸ ︷︷ ︸

=0, by (9)

ϕn(Z
′)ϕ∗n′(Z ′)︸ ︷︷ ︸

=0, by (9)

}
dZdZ ′=

N∑
n=1

E{σ2
n}

(18)
Furthermore, note that∫∫

E
{
∥K̂(Z;Z ′)∥2

}
dZdZ ′

=

∫∫
E
{ N∑
n=1

σ2
n∥ψn(Z)∥2︸ ︷︷ ︸

=1

∥ϕn(Z ′)∥2︸ ︷︷ ︸
=1

}
dZdZ ′=

N∑
n=1

E{σ2
n}

(19)
Then (17) is rewritten as,∫∫

E{∥K(Z;Z ′)∥2} dZdZ ′−2
N∑
n=1

E
{
σ2
n

}
+

N∑
n=1

E
{
σ2
n

}
=

∫∫
E{∥K(Z;Z ′)∥2}−2E

{
K(Z;Z ′)K̂(Z;Z ′)∗

}︸ ︷︷ ︸
by (18)

+E
{
∥K̂(Z;Z ′)∥2

}︸ ︷︷ ︸
by (19)

dZdZ ′

=

∫∫
E
{
∥K(Z;Z ′)−K̂(Z;Z ′)∥2

}
dZdZ ′ (20)

Substituting (20) in (17), we have (15), which implies that
minimizing the integral of MSE is equivalent to MMSE
in (16). From an inverse deduction, we can also obtain (16)
implies (15), so that (15) and (16) are equivalent.

Theorem 1 shows that the loss function in (16) maximizes
the sum of eigenvalues as well as address the finite Eigenwaves
approximation problem discussed in Section IV-A.

B. NN Constraints: Duality and Orthogonality

The MMSE loss function is equivalent to maximize the
sum of eigenvalues, while by the nature of NN, constraints are
responsible for maintaining orthogonality and duality, which
are critical properties of Eigenwaves for multiplexing, as
discussed in Proposition 1 and Proposition 2. However, both
orthogonality and duality are desired for effective multiplexing
rather than being specifically designed to improve training. Be-
fore employing them as constraints, two potential challenges
must be addressed: (a) the constraints should guide the outputs
to converge with the loss function, and (b) the constraints need
to be simplified to reduce the model complexity.
Lemma 1. (Necessity of duality) Duality constraint is a
necessity for achieving the maximum sum of eigenvalues.

Proof. Since by definition, λn=E{σ2
n}, where σn is the pro-

jection of the kernel onto the Eigenwaves, we have
N∑
n=1

λn=

N∑
n=1

E
{[∫∫

K(Z;Z ′)ψ∗
n(Z)ϕ

∗
n(Z

′)dZdZ ′
]2}

(21)

Since maximizing a squared term is equivalent to maximizing
its absolute value, we introduce a Lagrange multiplier 1

2βn
associated with the constraint for ψn and maximize E as,

E=

N∑
n=1

E
{∣∣∣∣∫∫ K(Z;Z ′)ψ∗

n(Z)ϕ
∗
n(Z

′) dZ dZ ′

−1

2
βn

(∫
ψn(Z)ψ

∗
n(Z) dZ−1

)∣∣∣∣} (22)

Differentiating (22) w.r.t each ψ∗
n and setting it to 0 yields,

∂E

∂ψ∗
n(Z)

=

E
{∣∣∣∣∫ (∫

K(Z;Z ′)ϕ∗n(Z
′) dZ ′−βnψn(Z)

)
dZ

∣∣∣∣}=0 (23)

which is satisfied when,∫
K(Z;Z ′)ϕ∗n(Z

′) dZ ′=βnψn(Z) (24)

(24) is indeed the duality constraint. (21) implies (24)
indicating duality constraint is necessary for maximizing the
sum of eigenvalues.

Lemma 1 shows that duality not only reduce the channel
distortion for multiplexing but also ensure the convergence for
NN, which partially addresses the first challenge stated above.
Lemma 2. (Equivalence between duality and orthogonality)
Given K(Z;Z ′)=

∑∞
n=1σnψn(Z)ϕn(Z

′), where {ψn} and
{ϕn} are arbitrary normalized bases. If they are dual, then
they are orthogonal, and vice versa.

Proof. The proof is provided in Appendix C.
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Figure 2: Trilateral relationship of Multiplexing, HOGMT and
NN: Multiplexing is the primary goal for communication;
HOGMT is mathematical foundation for an optimal solution;
NN is a low complexity implementation of HOGMT, which in
turn achieves optimal multiplexing in practice.

Lemma 1 and Lemma 2 indicate that both duality and
orthogonality constraints guide the convergence of NN, and
they can be combined into a single constraint to reduce the
complexity of the model. Therefore, two challenges mentioned
above are addressed. Figure 2 shows the trilateral relationship
among multiplexing, HOGMT and NN. For multiplexing,
basis functions are employed to achieve subchannel gains and
cancel interference. Eigenwaves, decomposed by HOGMT, are
shown to be the optimal bases, where the eigenvalues, duality
and orthogonality correspond to subchannels and interference
cancellation, respectively. Theorem 1, Lemma 1, and Lemma 2
demonstrate that these properties can be realized by an equiva-
lent neural network with the MMSE loss function and orthog-
onality constraints, thus providing a practical implementation
of multiplexing for doubly selective channels.

C. HNet: NN Implementation of HOGMT

To obtain the unstructured Eigenwaves for doubly selective
channels and implement optimal multiplexing in practice, we
design an equivalent NN for HOGMT, HNet.
Theorem 2. (HNet) The neural network with the equality-
constrained objective function (25) makes the outputs converge
to the optimal bases for doubly selective channels.

L=J+
2∑
i=1

αiΩi (25)

where J is the MSE optimization in (26)

J≜ 1

B

B∑
b=1

∥Kb−
∑N
n=1σn,bΨn,b⊗Φn,b∥2

∥Kb∥2
(26)

where Kb is the input kernel. B is the batch size. Ω1 and Ω2

are the regularizations for the orthogonality constraints in (9),

Ω1≜
1

B

B∑
b=1

N∑
n=1

N∑
n′ ̸=n

∥⟨Ψn,b,Ψn′,b⟩∥ (27)

Ω2≜
1

B

B∑
b=1

N∑
n=1

N∑
n′ ̸=n

∥⟨Φn,b,Φn′,b⟩∥ (28)

where, αi are penalties for Ωi. For HNet, σ1=σ2=σ.

Proof. The optimal bases for doubly selective channels must
maximize subchannel gains while minimizing channel distor-
tion and interference. According to (10), the subchannel gains
are equivalent to eigenvalues. Proposition 1 and Proposition 2

Tx Data 
Symbols

HNet/AHNet

Multiplexing Doubly selective 
Channel Demultiplexing 

CSI

HNet/AHNet

Rx Data 
Symbols

CSI

Eigenwave
 Matched FilterEigenwaves

Kernel 
operation
+ Noise 

Figure 3: Practical system view of HNet/AHNet-MEM:
HNet/AHNet decomposes CSI into dual Eigenwaves {ϕn}
and {ψn}, which are utilized for multiplexing at the transmit-
ter and demultiplexing at the receiver, respectively.

show that, with duality and orthogonality as constraints, chan-
nel distortion and interference are eliminated. By Lemma 1,
these constraints also guide the convergence. Therefore, the
optimization of the bases for the doubly selective channel with
kernel K(Z;Z ′) is formulated as,

argmax
{ϕn},{ψn}

N∑
n=1

E
{
σ2
n

}
s.t. (9), (10) (29)

By Theorem 1, (15) is equivalent to (26). By Lemma 2, (9)
and (10) are simplified to (9). Therefore, (29) is rewritten as,

argmax
{ϕn},{ψn}

N∑
n=1

E
{
∥K(Z;Z ′)−K̂(Z;Z ′)∥2

}
s.t. (9) (30)

Introducing Lagrange multipliers αi as penalties and rewrit-
ing (30) in tensor form, the corresponding Lagrangian function
is identical to the objective function (25).

Theorem 2 proves that HNet answers the three open
questions posed in the Section I as follows,
• HNet provides a practical method for obtaining non-

predefined and unstructured Eigenwaves for doubly selective
channels, with convergence proven by Theorem 2, and low
complexity discussed in the Section VI-B.

• Since Eigenwaves decomposed by HOGMT are optimal
bases for doubly selective MIMO channels, HNet serves
as an optimal training method for doubly selective MIMO
channels with respect to multiplexing.

• The MMSE gains are equivalent to subchannel gains, as
established by Theorem 1. By using the outputs of HNet as
bases, these subchannel gains can be achieved.

Figure 3 presents a practical system view of HNet/AHNet-
MEM, offering a high-level understanding of how neural net-
works (NN) are integrated into our system.Detailed explana-
tions of AHNet, the corresponding architecture and AHNet-
MEM can be found in Section VI, Section VI-A and Sec-
tion VI-C, respectively. The trained HNet/AHNet model is
deployed at both the transmitter and receiver. With CSI as
input, the NN outputs dual Eigenwaves, which serve as sub-
carriers for multiplexing at the transmitter and demultiplexing
at the receiver.
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VI. ADAPTIVE NEURAL NETWORK

In practice, both the required number of Eigenwaves and
the channel environment (such as MIMO scales) may vary,
leading to different kernel sizes and N , which require changes
in the NN architecture and tuning of the Lagrange multiplier
(penalty), α. The fundamental reason is that any α, is no longer
optimal for the Lagrangian function when its optimal solution
changes for a different input. Therefore, training HNet with
a fixed penalty for different kernel types does not guarantee
the optimal performance, as it requires dynamic adaptation of
the Lagrange multipliers during the training. To address this,
we propose an adaptive neural network architecture, AHNet,
by incorporating the ALM [32] into HNet as in Corollary 1.
Corollary 1. (AHNet) The adaptive neural network for im-
plementing HOGMT is achieved by modifying the objective
function (25) to (31), which does not lose the convergence.

L′=J+
2∑
i=1

A⊺
i Ω

′
i+
µ

2

2∑
i=1

∥Ω′
i∥2 (31)

where, Ai is the vector containing the Lagrange multipliers.
Ai≜[αi,1,αi,2,...,αi,K ]⊺∈R2K (32)

Ω′
1 and Ω′

2 are orthogonality constraints as

Ω′
1≜

1

B

B∑
b=1

[
Φ̃1,b,Φ̃2,b,...,Φ̃K,b

]⊺
Ω′

2≜
1

B

B∑
b=1

[
Ψ̃1,b,Ψ̃2,b,...,Ψ̃K,b

]⊺ (33)

where, Φ̃k,b and Ψ̃k,b are the inner products of one pair of
(Φn,b,Φn′,b) and (Ψn,b,Ψn′,b) for n ̸=n′ respectively. There
are K=N(N−1) pairs for such Eigenwave set. During the
training, Ai is updated as follows,

Ak+1
i =Aki+µ

kΩ′
i (34)

where, µ is used to control the learning rate of the model.

Proof. ALM [32] is an adaptive technique to solve an equality-
constrained optimization problem. Consider an optimization
problem under M constraints

argmin
x

F (x) s.t. ci(x)=0, ∀i=1,2,...,M (35)
The corresponding Lagrangian function is,

L(x,α)≜F (x)+
M∑
i=1

αici(x) (36)

where α≜[α1,α2,...,αM ]⊤ are the Lagrange multipliers. ALM
modifies (35) in to the following problem,

argmin
x

F (x)+
µ

2
∥c(x)∥2

s.t. ci(x)=0, ∀i=1,2,...,M
(37)

where, c(x)≜[c1(x),c2(x),...,cM (x)]⊤. µ is the penalty pa-
rameter. Therefore, the Lagrangian function of (37) is,

Lµ(x,α)≜F (x)+
µ

2
∥c(x)∥2+

M∑
i=1

αici(x) (38)

(38) is called the augmented Lagrangian function. It is shown
that, both problems (35) and (37) share the same optimal
solution x∗ and the optimal Lagrange multipliers α∗ [32].

Model 
Update

Each Batch Each Epoch 

Update Lagrange Multipliers
Algorithm 1
(Line # 9)

NN
Model

Update Penalty
Algorithm 1

(Line # 10-13)
Calculate 

Normalize 

Figure 4: Adaptive Training of AHNet: The outer loop (“per
epoch”) updates the Lagrange multipliers Ai and the penalty
µ. The inner loop (“per batch”) updates the NN parameters.

Therefore, ALM transforms the constrained optimization in
(35) into an unconstrained problem in (38). By following
the same deduction steps in the proof of Theorem 2 and
substituting (30) in (35), (38) is converted into (31).

Remark 1. In HNet, the Lagrange multipliers αi have to
be tuned manually. To reduce the model’s complexity, we set
only two multipliers, each corresponding to the orthogonality
constraint for one Eigenwave set. In contrast, in AHNet,
the Lagrange multipliers are automatically updated according
to (34), providing the flexibility to set penalties for each inner
product of the Eigenwaves.

The ALM theory requires dynamic update of µ in order to
adapt to the current constraint. Otherwise, it leads to either
too-small or too-large update rate for Ai. [32] provides a
dynamic update criteria for µ. This update step depends on
the current conditions of the constraint. Predefined parameters
β>1 and γ<1 ensure that µ increases when the constraints
Ω′

1 and Ω′
2 does not decrease over the iterations. Therefore,

by coupling the NN training with the update of the Lagrange
multipliers in (34) and the parameter µ, AHNet can ensure
that the Lagrange multipliers are always optimized towards
the optimal NN model, which solves the problem of fixed
penalty in HNet mentioned above.

A. AHNet Architecture

To decompose a spatio-temporal channel kernel,
K(u,t;u′,t′)∈CLu×Lt×Lu′×Lt′ with L≜LuLtLu′Lt′

elements, the HNet and AHNet is designed with 5
fully connected, feed-forward layers as shown in Figure 3.
However, this model requires real inputs and outputs only.
As a result, the L elements of the kernel are split into
real and imaginary parts at the input. The dimension of
each layer is as follows: input and output layers have 2L
and Ñ≜N+2N(LuLt+Lu′Lt′) nodes, respectively, while
the hidden layers have 1024 nodes each. The LeakyRelu
activation function with a negative slope of 0.01 is used for
the hidden linear layers. Output nodes corresponding to σ
parameters have soft plus activation, and the remaining output
nodes have linear activation.
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Figure 5: Doubly selective MIMO channel profile in the time, frequency and space domains

Table II: Complexity of eigen-decomposition methods: AHNet
and HNet both have lowest complexity. N : Number of eigen-
components. Nd: channel dimension, NL: Number of layers.

Channel
Type Method Complexity

Spatial SVD O(min(NtN2
r ,N

2
t Nr))

(H) SVD-DNN [13] O(max(2N2NtNr,2N2N2
t ,2N

2N2
r ))

Higher
Dim.

Kernel
(K)

HOSVD [33] O(Ndmax(LuLtLu′ ,LuLtLt′ ,LtLu′Lt′ )
3)

HOGMT [12] O(min(LuLt(Lu′Lt′ )
2,(LuLt)2Lu′Lt′ ))

HNet O(2NNLLuLtLu′Lt′ )

AHNet O(2NNLLuLtLu′Lt′ )

B. Complexity Analysis

The computational complexity for eigen-decomposition is
the crucial challenging for practical MEM. Table II provides
the complexity comparison for HNet and AHNet with SoTA.
Both SVD and DNN-SVD are designed to decompose 2-D
matrices only. While High-Order SVD (HOSVD), HOGMT
and proposed methods decompose multi-dimensional tensors.
The relationship between SVD, HOSVD and HOGMT can be
found in Lemma 3 of [12]. Since both HNet and AHNet
use fully connected architectures (Section VII), their time
complexities are the same, which depends on the number of
layers (NL), the size of the input (2LuLtLu′Lt′ for a complex-
valued NN) and the size of the output (N ). It is clear that
proposed NNs have less complexity than HOSVD. Meanwhile,
for a fixed N and NL, the complexity of both HNet and
AHNet increase at a much slower rate than HOGMT with
increasing size of the input tensor.

C. AHNet-MEM: NN-based MEM

Theorem 2 and Corollary 1 show that with CSI as inputs,
the outputs of HNet and AHNet converge to the optimal
bases, Eigenwaves. This provides the practical implementation
of MEM for doubly selective channels. Figure 3 shows the
practical system of AHNet-MEM. Decomposing the CSI into
Eigenwaves by HNet/AHNet, the transmitted signal x(Z ′) is
obtained by multiplexing data symbols {sn} onto {ϕ∗n}.

x(Z ′)=

N∑
n

snϕ
∗
n(Z

′) (39)

Transmitting it over the channel, the received signal is

r(Z)=

∫
K(Z;Z ′)x(Z ′) dZ ′+v(Z)

=

∫
K(Z;Z ′)

N∑
n

snϕ
∗
n(Z

′) dZ ′+v(Z)

=

N∑
n=1

σnsnψn(Z)︸ ︷︷ ︸
by (10)

+v(Z) (40)

Estimate symbols {ŝn} are obtained by demultiplexing
the received signal r(Z) using ”Matched Filter” with dual
Eigenwaves {ψ∗

n} at the receiver,

ŝn=

∫
r(Z)ψ∗

n(Z) dZ=

∫ N∑
n′=1

σn′sn′ψn′(Z)ψ∗
n(Z) dZ

+

∫
v(Z)ψn(Z)dZ=

N∑
n′=1

σn′sn′ δn′n︸︷︷︸
by (9)

+vn=σnsn+vn (41)

(41) shows that there is no interference across demodulated
symbols. During the transmission, {sn} can be seen as trans-
mitted through independent subchannels in the eigen domain
with subchannel gains {σn}. The error probability for M-QAM
modulated symbols is given as [34],

Pr≈4Q
(√

3σ2
n/ζn(M−1)

)
(42)

where ζn is power of vn. (42) indicates that, with a fixed ζn,
low σn results in high BER. Since eigenvalues are descending
ordered, selecting an appropriate number, N , of Eigenwaves
as bases is crucial to minimize the BER.

VII. AHNET IMPLEMENTATION AND TRAINING

The proposed method is validated in two scenarios: Case-
1: 4-D doubly selective MIMO channels. Since SoTA are
proposed for 2-D channels, we compare them in the degen-
eration case: Case-2: 2-D doubly selective channels. To avoid
redundancy, we focuses on the implementation details for the
Case-2, as Case-1 is a special cases of Case-2.
Data Generation: The doubly selective channel is generated
using 3GPP 38.901 UMa NLOS senario built on QuaDriga
in Matlab. The channel parameters and the layout of the
base station (BS) and the user equipment (UE) are shown
in Table III. Figure 5a and 5b show the channel profiles in
time-delay domain and time-frequency domain for the first
user, respectively. The time-varying dispersion in both delay
and frequency domain indicates the doubly selective channels.
Correlation Matrix Distance (CMD) is a measure of the time-
varying correlation in the space domain [35]. Figure 5c and 5d
show the CMD at the transmitter and the receiver, respectively,
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Table III: Parameters of the doubly selective MIMO channel

Parameter Value
Channel model 3GPP 38.901 UMa NLOS [36]

Array type BS: 3GPP 3-D [37]; UE: Vehicular [38]
BS antenna Height hb=10 m; Number Nu′=10

UE antenna Height hu=1.5 m; Number Nu=4

UE speed v∈[100,150] km/h
Bandwidth Bw = 20 MHz; Center frequency: fc=5 GHz

Channel size Each segments: H(t,τ)∈C4×64×4×64

where they are presented over time instead of distance because
the varying mobility profiles of the transceiver lead to different
distances over time. Noticing that normalizing a channel does
not change its structure, distribution and characteristics, we
normalize the above channel and generate 10000 samples by
H̃(t,τ)=H(t,τ)+∆H(t,τ) with ∆H(t,τ)∼N (0,∆σ2), where
∆σ2 represents the variation of samples. Since our methods
are validated across multiple scenarios with varying channel
sizes and distributions, a unified metric, the expected Error
Vector Magnitude (EVM), η, is used to quantify the relative
difference between samples and the centered channel,

η=E
{
||H̃(t,τ)−H(t,τ)||
||H(t,τ)||

}
(43)

For MEM, we evaluate the performance under both perfect
and imperfect CSI scenarios. In the perfect CSI case, the trans-
mission channel matches the input channel sample exactly,
where η indicates the divergence of samples. In the imperfect
CSI scenario, a new sample is generated as the transmission
channel, and thus η also indicates the level of CSI error.
Training: For the generated samples, 80% are used for
training and 20% are used for validation. The mini-batch
training is adopted to train both HNet and AHNet. The
training data set is split into 32 mini-batches and trained using
Adam optimizer with a learning rate of 1×10−5. Figure 4
shows how various training-related parameters are updated
in every batch and epoch while training AHNet. Figure 4
shows that there are some adaptive parameters involved in
the training, such as A1, A2 and µ, that depend on Ω′

1 and
Ω′

2. These parameters are updated during each epoch, relative
to the Ω′

1 and Ω′
2 of the last mini-batch of the previous epoch

using (34) for A1 and A2 and Algorithm 1 lines 10-13 for
µ with γ = 0.25 and β= 1.01 and initial value for µ as 1.
The initial values of Ai are set to 0 as it provides flexibility
in choosing the rest of the parameters. Algorithm 1 is used
for training AHNet with an initialization of the inputs, A1,
A2, µ and γ. Lines 3-8 are steps for kernel processing and
parameter calculation in each batch according to (31)-(33).
Line 9 updates the Lagrange multipliers according to the
constraints and µ, where µ is further updated in lines 10-13.

VIII. EVALUATION AND RESULTS

The total loss is a general evaluation metric for NNs,
which depends on the sum of all eigenvalues for eigen-
decomposition [28]. While in the communication systems,
duality and orthogonality are the most critical metrics for
interference cancellation. However, any NN-based method

Algorithm 1 AHNet Training

1: Inputs A[0]
1 ,A

[0]
2 ,µ[0],γ ;

2: for i←0 to training epochs do
3: for mini batches←0 to data size/batch size do
4: σn,b,Φn,b,Ψn,b=AHNet Model(Kb);
5: Normalize Φn,b and Ψn,b;
6: Calculate J according to (26);
7: Calculate Ω′

1 and Ω′
2 according to (33);

8: end for
9: A

[i+1]
1 ←A[i]

1 +µΩ′
1; A

[i+1]
2 ←A[i]

2 +µΩ′
2;

10: if ∥Ω′
1∥[i]+∥Ω′

2∥[i]>γ(∥Ω′
1∥[i−1]+∥Ω′

2∥[i−1]) then
11: µ[i+1]←βµ[i];
12: else µ[i+1]←µ[i];
13: end if
14: end for

cannot achieve strict duality and orthogonality as the hard
decision will limit the freedom of the output space and lead
to over-fitting. Therefore, we define metrics, soft duality and
soft orthogonality as follows,
Definition 1. According to (10), soft duality of two Eigenwave
sets {Ψ} and {Φ} with respect to kernel Kb is defined as

d≜
1

N

N∑
n=1

∥⟨Kb,Φn⟩−σnΨn∥2 (44)

where d=0 indicates that {Ψ} and {Φ} are strict dual.
Definition 2. According to (9), soft orthogonality of the
Eigenwave set {Ψ} is defined as

O(Ψ)≜
1

N(N−1)

N∑
n=1

N∑
n′ ̸=n

∥⟨Ψn,Ψn′⟩∥ (45)

where O(Ψ)=0 indicates that the Eigenwaves obtained from
the NN, {Ψ} are strictly orthogonal. Similarly, O(Φ) denotes
the soft orthogonality for Eigenwaves {Φ}.

A. Case-1: 4-D Doubly Selective MIMO Channels

1) Performance of Neural Networks: AHNet and HNet

Figure 6 compares the performance of AHNet and HNet
for 4D channels. Notably, AHNet does not require parameter
tuning, while HNet does. With different penalties, α=0.1
and α=0.01, HNet shows varying convergence patterns, and
both settings converge more slowly than AHNet, as shown
in Figures 6a-6d. HNet achieves a small gain in O{Φ̂} and
O{Ψ̂}, while AHNet show a better performance in both
J and duality. Given that AHNet is more adaptive and
stable—avoiding parameter tuning and converging faster than
HNet—we consider AHNet a more practical and effective
architecture than HNet.

We further evaluate the adaptivity of AHNet in Figures 7a-
7d, where the length of the time dimension is fixed at
Lt=L

′
t=64 and the length of the space dimension is set to

Lu=L
′
u=2,4 and 6, corresponding to N=128,256 and 384, re-

spectively. For different N , MSE converges to the similar value
J≈4×10−2, indicating the loss remains consistent across
varying N . With larger N , AHNet achieves lower d, O{Φ̂}
and O{Ψ̂}. This occurs because duality and soft orthogonality
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Figure 6: Performance comparison between AHNet and HNet for a 4-D channel kernel: (a)-(d) show the MSE J , duality,
soft orthogonality O(Φ̂) and O(Ψ̂) for N=256 (Lu=L′

u=4 and Lt=L′
t=64) at η=0.2, respectively.
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Figure 7: AHNet for 4-D channel kernel: (a)-(d) MSE J , duality, soft orthogonality O(Φ̂) and O(Ψ̂) for N=128, 256 and
384 (Lu=L′

u=2, 4 and 6 with Lt=L′
t=64) at η=0.2. (e)-(h) Performance for η=0.1, 0.2 and 0.3 with N=256, respectively.

are calculated by averaging the non-dual and non-orthogonal
errors, respectively, which are inversely proportional to N .
Nonetheless, even with the smallest N=128, AHNet can still
achieves duality below 4×10−4 and the soft orthogonality
approximating at only 2×10−6.

Figures 7e-7h evaluate the robustness of AHNet for N=
256 at η=0.1,0.2 and 0.3, respectively. With increasing η,
both MSE and the duality rise. Specifically, in the worst case
η=0.3, we have J<10−1 and d<4×10−4. In contrast, the
soft orthogonality is consistent across different η, converging
to approximately 5×10−7. Such low soft orthogonality will
significantly reduce the interference for multiplexing. The per-
formance of decomposed Eigenwaves will be further evaluated
by multiplexing in Section VIII-A2.

2) Performance of Multiplexing: AHNet-MEM

MEM with perfect CSI is considered as the ideal modulation
with respect to interference cancellation, since data symbols
are transmitting through orthogonal subchannels in the eigen
domain, where eigenvalue affects the error rate as shown
in (42). In this subsection, N denotes the number of top
Eigenwaves are employed for multiplexing. Figure 8a com-

pares the BER of AHNet-MEM and MEM with N=160,192,224
and 256 for the perfect CSI, respectively, where 4-D channel
is H(t,τ)∈C4×64×4×64 as given in Table III. For N=192,224
and 256, the BER of both AHNet-MEM and MEM is higher
than 10−2, as eigenvalues of last few eigenwaves are vary
small for this complex channel. When N=160, AHNet-MEM
achieves BER at around 10−3 and the gap between it and
the ideal MEM is less than 1 order of magnitude. Figure 8b
shows the throughput of AHNet-MEM and MEM for different
N , where throughput is calculated as the total transmitted
bits minus the error bits. With larger N , the throughput is
higher. This is because more data symbols are multiplexed
for each transmission. Therefore, there is a clear trade-off
between BER and the throughput with respect to N . Figure 8c
and 8d compares their performance for imperfect CSI with a
fixed N=192 and η=0.1,0.2 and 0.3, respectively. In this case,
the performance of MEM degrades over η as the Eigenwaves
decomposed from the imperfect CSI are not strict orthogonal
over the transmission channel. However, AHNet-MEM shows
strong robustness to the CSI error and achieves better perfor-
mance than MEM across all the η. This is because, by using
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Figure 8: AHNet-MEM and MEM for 4-D doubly selective MIMO channels: (a)-(b) BER and throughput for the perfect CSI
with N=160,192, 224 and 256; (c)-(d) BER and throughput for imperfect CSI with fixed N=192 at η=0.1, 0.2 and 0.3.

imperfect CSI as inputs, AHNet make the outputs converge
to optimal Eigenwaves across the CSI errors in MMSE sense
during the training. There is a trade-off between optimality and
robustness for MEM and AHNet-MEM. Considering perfect CSI
is unattainable in practice and that MEM has significantly higher
complexity, AHNet-MEM presents a more practical approach.

B. Case-2: 2-D Doubly Selective Channels

1) Performance of Neural Networks: AHNet and HNet

Figure 9 compares the training performance among
AHNet, HNet and SVD-DNN for 2-D doubly selective chan-
nels with a rank of N=64 and a relative CSI error of η=0.2.
The penalties for orthogonality constraints defined by (25) are
both set to α=0.1. Figure 9a shows the training and testing
losses, where both AHNet and HNet reach J<5×10−2. The
SVD-DNN achieves the least training loss with J≈4×10−3

but the test loss diverges after 20 epochs, stabilizing at a
similar order of magnitude as AHNet and HNet. Figure 9b
compares the duality, with both AHNet and HNet achieving
d≈6×10−4, while SVD-DNN shows divergence in duality
during training, approaching d≈5×10−2. Consequently, both
AHNet and HNet achieve 2 orders of magnitude improvement
over SVD-DNN. Figure 9c and 9d show the soft orthogonality
of the decomposed Eigenwaves, where O{Φ̂} and O{Ψ̂} show
a similar trends as their orthogonality influences each other due
to the duality. Both HNet and AHNet achieve approximate
2 orders of magnitude gains than SVD-DNN. While HNet
performs slightly better than AHNet, it converges about 20
epochs more slowly. Overall, SVD-DNN achieves a slight
improvement in testing loss at the expense of: 1) both duality
and orthogonality, which are key properties for multiplexing
as discussed in Section IV-B; 2) higher complexity than both
HNet and AHNet as shown in Table II, and 3) adaptivity to
4-D tensors. Further, since SVD-DNN is not explainable, its
performance is not guaranteed.

2) Performance of Multiplexing: AHNet-MEM

In this case, we compare the performance of AHNet-
MEM with MEM and OTFS. For a fair comparison, OTFS is
equipped with the Time-Frequency Single Tap (TFST) [39]
detector and Zero-Padded Maximal Ratio Combining (ZP-
MRC) [40] detector, respectively, which also leverage the
perfect CSI at the receiver. The size of delay-Doppler grid for

OTFS is 4×16 and the rank of the channel is 64. Figure 10a
and 10b show their performance under perfect CSI. Even with
N=64, AHNet-MEM and MEM achieve lower BER than OTFS.
Because OTFS subcarriers can not maintain orthogonal in
doubly selective channels. AHNet-MEM and MEM with N=64
achieve the highest throughput. With N=60, their throughput
is similar as OTFS with TFST, as 4 Eigenwaves are not
utilized. OTFS with ZP-MRC has the lowest throughput due to
the requirement of zero padding, set to 1/8 length of symbols.
Figure 10c and 10d show their performance under imperfect
CSI with a fixed N=60 and η=0.1,0.2 and 0.3. Due to space
constraints, we only show the performance of OTFS at η=0.1.
Even with η=0.3, AHNet-MEM achieves the lower BER and
higher throughput than both MEM and OTFS. Overall, AHNet-
MEM shows a near-ideal performance under perfect CSI and a
robust performance under imperfect CSI.

IX. DISCUSSION

Conventional modulation methods require CSI only at the
receiver side for detection. In contrast, AHNet-MEM requires
CSI at both the transmitter and receiver, which is a signifi-
cant cost. However, since precoding techniques also require
CSI at the transmitter for spatial interference cancellation,
we believe this cost does not impose an additional burden
from a system-level perspective. Meanwhile, from a results
perspective, regardless of channel conditions or the number of
DoFs involved, AHNet-MEM converts all channel interference
into errors arising from imperfect CSI and neural network
inaccuracies, both of which are thoroughly evaluated in this
paper. As an NN-based approach, performance is inevitably
influenced by the distribution of the training and validation
data. This implies that for non-stationary channels, the per-
formance cannot be guaranteed. In the future, we plan to
further explore equalization and multiple access techniques
based on AHNet-MEM in the eigen domain. Further, based on
HOGMT, AHNet can decompose a general multi-dimensional
asymmetrical kernel into Eigenwaves, where the kernel is
not limited to be the channel. This flexibility and generality
enables AHNet to support a broader range of applications in
other domains that require eigen decomposition.
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Figure 9: Performance comparison among AHNet, HNet and SVD-DNN for a 2-D channel kernel: (a)-(d) show the MSE J ,
duality, soft orthogonality O(Φ̂) and O(Ψ̂) for N=64 at η=0.2, respectively.
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Figure 10: Comparing AHNet-MEM, MEM and OTFS for 2-D doubly selective channels: (a)-(b) BER and throughput for perfect
CSI with N=56, 60 and 64; (c)-(d) BER and throughput for imperfect CSI with fixed N=60 at η=0.1, 0.2 and 0.3, respectively.

X. CONCLUSION

In this paper, we show that Eigenwaves are the optimal
bases for doubly selective channels due to their inherent prop-
erties of duality and orthogonality, with eigenvalues translate
to subchannel gains. To address the open problem of obtaining
Eigenwaves with practical complexity, we establish a trilateral
relationship among multiplexing, HOGMT, and NN, which
forms the basis of an explainable NN, HNet. The loss function
and regularization terms are derived from first principles to
ensure convergence, generality, and low computational com-
plexity. The HNet is enhanced to AHNet, with the ALM
framework to avoid parameter tuning, with both demonstrat-
ing lower complexity than conventional eigen decomposition
methods. This adaptive NN implements AHNet-MEM system,
which minimizes inference for doubly selective channels.
We validate our theory by examining NN convergence and
BER in both 2-D doubly selective channels and 4-D doubly
selective MIMO channels. Additionally, we test the robustness
of AHNet-MEM with imperfect CSI, achieving nearly 2 orders
of magnitude improvement in BER than OTFS at 20 dB SNR.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. Let a=σn, gtx(Z
′)=ϕ∗n(t,f) and grx(Z)=ψn(Z).

Therefore, we have,

ϵ=E
{∥∥∥∥H(ϕn(Z ′))−σnψn(Z)

∥∥∥∥2}
=E

{∥∥∥∥∫∫ K(Z;Z ′)ϕ∗n(Z
′)dZ ′︸ ︷︷ ︸

Duality

−σnψn(Z)
∥∥∥∥2}

=E
{∥∥ σnψn(Z)−σnψn(Z)∥∥2}=0

APPENDIX B
PROOF OF PROPOSITION 2

Proof. The second term in (14) is
N∑

n′ ̸=n

sn′⟨H(ϕn(Z ′))︸ ︷︷ ︸
by (10)

,ψn′(Z)⟩=
N∑

n′ ̸=n

sn′⟨σnψn(Z),ψn′(Z)⟩

=

N∑
n′ ̸=n

sn′σn⟨ψn(Z),ψn′(Z)⟩︸ ︷︷ ︸
by (9)

=0

APPENDIX C
PROOF OF LEMMA 2

Proof. By duality, ⟨ψn,ψn′⟩ can be rewritten as in (46), where
the residual terms must be 0. Careful observation reveals that
⟨ϕn,ϕn′⟩=0 for any n ̸=n′, confirming that ϕn are orthogonal.
Interchanging ϕn and ψn yields the same conclusion. Through
inverse deduction, it follows that orthogonality implies duality.
Thus, duality and orthogonality are equivalent constraints.
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